Step |
Hyp |
Ref |
Expression |
1 |
|
iocopn.a |
|- ( ph -> A e. RR* ) |
2 |
|
iocopn.c |
|- ( ph -> C e. RR* ) |
3 |
|
iocopn.b |
|- ( ph -> B e. RR ) |
4 |
|
iocopn.k |
|- K = ( topGen ` ran (,) ) |
5 |
|
iocopn.j |
|- J = ( K |`t ( A (,] B ) ) |
6 |
|
iocopn.alec |
|- ( ph -> A <_ C ) |
7 |
|
iocopn.6 |
|- ( ph -> B e. RR ) |
8 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
9 |
4 8
|
eqeltri |
|- K e. Top |
10 |
9
|
a1i |
|- ( ph -> K e. Top ) |
11 |
|
ovexd |
|- ( ph -> ( A (,] B ) e. _V ) |
12 |
|
iooretop |
|- ( C (,) +oo ) e. ( topGen ` ran (,) ) |
13 |
12 4
|
eleqtrri |
|- ( C (,) +oo ) e. K |
14 |
13
|
a1i |
|- ( ph -> ( C (,) +oo ) e. K ) |
15 |
|
elrestr |
|- ( ( K e. Top /\ ( A (,] B ) e. _V /\ ( C (,) +oo ) e. K ) -> ( ( C (,) +oo ) i^i ( A (,] B ) ) e. ( K |`t ( A (,] B ) ) ) |
16 |
10 11 14 15
|
syl3anc |
|- ( ph -> ( ( C (,) +oo ) i^i ( A (,] B ) ) e. ( K |`t ( A (,] B ) ) ) |
17 |
2
|
adantr |
|- ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> C e. RR* ) |
18 |
3
|
rexrd |
|- ( ph -> B e. RR* ) |
19 |
18
|
adantr |
|- ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> B e. RR* ) |
20 |
|
elinel1 |
|- ( x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) -> x e. ( C (,) +oo ) ) |
21 |
|
elioore |
|- ( x e. ( C (,) +oo ) -> x e. RR ) |
22 |
20 21
|
syl |
|- ( x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) -> x e. RR ) |
23 |
22
|
rexrd |
|- ( x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) -> x e. RR* ) |
24 |
23
|
adantl |
|- ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> x e. RR* ) |
25 |
|
pnfxr |
|- +oo e. RR* |
26 |
25
|
a1i |
|- ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> +oo e. RR* ) |
27 |
20
|
adantl |
|- ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> x e. ( C (,) +oo ) ) |
28 |
|
ioogtlb |
|- ( ( C e. RR* /\ +oo e. RR* /\ x e. ( C (,) +oo ) ) -> C < x ) |
29 |
17 26 27 28
|
syl3anc |
|- ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> C < x ) |
30 |
1
|
adantr |
|- ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> A e. RR* ) |
31 |
|
elinel2 |
|- ( x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) -> x e. ( A (,] B ) ) |
32 |
31
|
adantl |
|- ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> x e. ( A (,] B ) ) |
33 |
|
iocleub |
|- ( ( A e. RR* /\ B e. RR* /\ x e. ( A (,] B ) ) -> x <_ B ) |
34 |
30 19 32 33
|
syl3anc |
|- ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> x <_ B ) |
35 |
17 19 24 29 34
|
eliocd |
|- ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> x e. ( C (,] B ) ) |
36 |
2
|
adantr |
|- ( ( ph /\ x e. ( C (,] B ) ) -> C e. RR* ) |
37 |
25
|
a1i |
|- ( ( ph /\ x e. ( C (,] B ) ) -> +oo e. RR* ) |
38 |
|
iocssre |
|- ( ( C e. RR* /\ B e. RR ) -> ( C (,] B ) C_ RR ) |
39 |
2 7 38
|
syl2anc |
|- ( ph -> ( C (,] B ) C_ RR ) |
40 |
39
|
sselda |
|- ( ( ph /\ x e. ( C (,] B ) ) -> x e. RR ) |
41 |
18
|
adantr |
|- ( ( ph /\ x e. ( C (,] B ) ) -> B e. RR* ) |
42 |
|
simpr |
|- ( ( ph /\ x e. ( C (,] B ) ) -> x e. ( C (,] B ) ) |
43 |
|
iocgtlb |
|- ( ( C e. RR* /\ B e. RR* /\ x e. ( C (,] B ) ) -> C < x ) |
44 |
36 41 42 43
|
syl3anc |
|- ( ( ph /\ x e. ( C (,] B ) ) -> C < x ) |
45 |
40
|
ltpnfd |
|- ( ( ph /\ x e. ( C (,] B ) ) -> x < +oo ) |
46 |
36 37 40 44 45
|
eliood |
|- ( ( ph /\ x e. ( C (,] B ) ) -> x e. ( C (,) +oo ) ) |
47 |
1
|
adantr |
|- ( ( ph /\ x e. ( C (,] B ) ) -> A e. RR* ) |
48 |
40
|
rexrd |
|- ( ( ph /\ x e. ( C (,] B ) ) -> x e. RR* ) |
49 |
6
|
adantr |
|- ( ( ph /\ x e. ( C (,] B ) ) -> A <_ C ) |
50 |
47 36 48 49 44
|
xrlelttrd |
|- ( ( ph /\ x e. ( C (,] B ) ) -> A < x ) |
51 |
|
iocleub |
|- ( ( C e. RR* /\ B e. RR* /\ x e. ( C (,] B ) ) -> x <_ B ) |
52 |
36 41 42 51
|
syl3anc |
|- ( ( ph /\ x e. ( C (,] B ) ) -> x <_ B ) |
53 |
47 41 48 50 52
|
eliocd |
|- ( ( ph /\ x e. ( C (,] B ) ) -> x e. ( A (,] B ) ) |
54 |
46 53
|
elind |
|- ( ( ph /\ x e. ( C (,] B ) ) -> x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) |
55 |
35 54
|
impbida |
|- ( ph -> ( x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) <-> x e. ( C (,] B ) ) ) |
56 |
55
|
eqrdv |
|- ( ph -> ( ( C (,) +oo ) i^i ( A (,] B ) ) = ( C (,] B ) ) |
57 |
5
|
eqcomi |
|- ( K |`t ( A (,] B ) ) = J |
58 |
57
|
a1i |
|- ( ph -> ( K |`t ( A (,] B ) ) = J ) |
59 |
16 56 58
|
3eltr3d |
|- ( ph -> ( C (,] B ) e. J ) |