Metamath Proof Explorer


Theorem iocssioo

Description: Condition for a closed interval to be a subset of an open interval. (Contributed by Thierry Arnoux, 29-Mar-2017)

Ref Expression
Assertion iocssioo
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A <_ C /\ D < B ) ) -> ( C (,] D ) C_ ( A (,) B ) )

Proof

Step Hyp Ref Expression
1 df-ioo
 |-  (,) = ( a e. RR* , b e. RR* |-> { x e. RR* | ( a < x /\ x < b ) } )
2 df-ioc
 |-  (,] = ( a e. RR* , b e. RR* |-> { x e. RR* | ( a < x /\ x <_ b ) } )
3 xrlelttr
 |-  ( ( A e. RR* /\ C e. RR* /\ w e. RR* ) -> ( ( A <_ C /\ C < w ) -> A < w ) )
4 xrlelttr
 |-  ( ( w e. RR* /\ D e. RR* /\ B e. RR* ) -> ( ( w <_ D /\ D < B ) -> w < B ) )
5 1 2 3 4 ixxss12
 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( A <_ C /\ D < B ) ) -> ( C (,] D ) C_ ( A (,) B ) )