Description: Condition for a closed interval to be a subset of an open interval. (Contributed by Thierry Arnoux, 29-Mar-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | iocssioo | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A <_ C /\ D < B ) ) -> ( C (,] D ) C_ ( A (,) B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ioo | |- (,) = ( a e. RR* , b e. RR* |-> { x e. RR* | ( a < x /\ x < b ) } ) |
|
2 | df-ioc | |- (,] = ( a e. RR* , b e. RR* |-> { x e. RR* | ( a < x /\ x <_ b ) } ) |
|
3 | xrlelttr | |- ( ( A e. RR* /\ C e. RR* /\ w e. RR* ) -> ( ( A <_ C /\ C < w ) -> A < w ) ) |
|
4 | xrlelttr | |- ( ( w e. RR* /\ D e. RR* /\ B e. RR* ) -> ( ( w <_ D /\ D < B ) -> w < B ) ) |
|
5 | 1 2 3 4 | ixxss12 | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A <_ C /\ D < B ) ) -> ( C (,] D ) C_ ( A (,) B ) ) |