Description: A closed-above interval with real upper bound is a set of reals. (Contributed by FL, 29-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iocssre | |- ( ( A e. RR* /\ B e. RR ) -> ( A (,] B ) C_ RR ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elioc2 | |- ( ( A e. RR* /\ B e. RR ) -> ( x e. ( A (,] B ) <-> ( x e. RR /\ A < x /\ x <_ B ) ) ) | |
| 2 | 1 | biimp3a | |- ( ( A e. RR* /\ B e. RR /\ x e. ( A (,] B ) ) -> ( x e. RR /\ A < x /\ x <_ B ) ) | 
| 3 | 2 | simp1d | |- ( ( A e. RR* /\ B e. RR /\ x e. ( A (,] B ) ) -> x e. RR ) | 
| 4 | 3 | 3expia | |- ( ( A e. RR* /\ B e. RR ) -> ( x e. ( A (,] B ) -> x e. RR ) ) | 
| 5 | 4 | ssrdv | |- ( ( A e. RR* /\ B e. RR ) -> ( A (,] B ) C_ RR ) |