| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iooval |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A (,) B ) = { x e. RR* | ( A < x /\ x < B ) } ) |
| 2 |
1
|
eqeq1d |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( A (,) B ) = (/) <-> { x e. RR* | ( A < x /\ x < B ) } = (/) ) ) |
| 3 |
|
df-ne |
|- ( { x e. RR* | ( A < x /\ x < B ) } =/= (/) <-> -. { x e. RR* | ( A < x /\ x < B ) } = (/) ) |
| 4 |
|
rabn0 |
|- ( { x e. RR* | ( A < x /\ x < B ) } =/= (/) <-> E. x e. RR* ( A < x /\ x < B ) ) |
| 5 |
3 4
|
bitr3i |
|- ( -. { x e. RR* | ( A < x /\ x < B ) } = (/) <-> E. x e. RR* ( A < x /\ x < B ) ) |
| 6 |
|
xrlttr |
|- ( ( A e. RR* /\ x e. RR* /\ B e. RR* ) -> ( ( A < x /\ x < B ) -> A < B ) ) |
| 7 |
6
|
3com23 |
|- ( ( A e. RR* /\ B e. RR* /\ x e. RR* ) -> ( ( A < x /\ x < B ) -> A < B ) ) |
| 8 |
7
|
3expa |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. RR* ) -> ( ( A < x /\ x < B ) -> A < B ) ) |
| 9 |
8
|
rexlimdva |
|- ( ( A e. RR* /\ B e. RR* ) -> ( E. x e. RR* ( A < x /\ x < B ) -> A < B ) ) |
| 10 |
|
qbtwnxr |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> E. x e. QQ ( A < x /\ x < B ) ) |
| 11 |
|
qre |
|- ( x e. QQ -> x e. RR ) |
| 12 |
11
|
rexrd |
|- ( x e. QQ -> x e. RR* ) |
| 13 |
12
|
anim1i |
|- ( ( x e. QQ /\ ( A < x /\ x < B ) ) -> ( x e. RR* /\ ( A < x /\ x < B ) ) ) |
| 14 |
13
|
reximi2 |
|- ( E. x e. QQ ( A < x /\ x < B ) -> E. x e. RR* ( A < x /\ x < B ) ) |
| 15 |
10 14
|
syl |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> E. x e. RR* ( A < x /\ x < B ) ) |
| 16 |
15
|
3expia |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A < B -> E. x e. RR* ( A < x /\ x < B ) ) ) |
| 17 |
9 16
|
impbid |
|- ( ( A e. RR* /\ B e. RR* ) -> ( E. x e. RR* ( A < x /\ x < B ) <-> A < B ) ) |
| 18 |
5 17
|
bitrid |
|- ( ( A e. RR* /\ B e. RR* ) -> ( -. { x e. RR* | ( A < x /\ x < B ) } = (/) <-> A < B ) ) |
| 19 |
|
xrltnle |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A < B <-> -. B <_ A ) ) |
| 20 |
18 19
|
bitrd |
|- ( ( A e. RR* /\ B e. RR* ) -> ( -. { x e. RR* | ( A < x /\ x < B ) } = (/) <-> -. B <_ A ) ) |
| 21 |
20
|
con4bid |
|- ( ( A e. RR* /\ B e. RR* ) -> ( { x e. RR* | ( A < x /\ x < B ) } = (/) <-> B <_ A ) ) |
| 22 |
2 21
|
bitrd |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( A (,) B ) = (/) <-> B <_ A ) ) |