| Step |
Hyp |
Ref |
Expression |
| 1 |
|
remet.1 |
|- D = ( ( abs o. - ) |` ( RR X. RR ) ) |
| 2 |
|
readdcl |
|- ( ( B e. RR /\ A e. RR ) -> ( B + A ) e. RR ) |
| 3 |
2
|
ancoms |
|- ( ( A e. RR /\ B e. RR ) -> ( B + A ) e. RR ) |
| 4 |
3
|
rehalfcld |
|- ( ( A e. RR /\ B e. RR ) -> ( ( B + A ) / 2 ) e. RR ) |
| 5 |
|
resubcl |
|- ( ( B e. RR /\ A e. RR ) -> ( B - A ) e. RR ) |
| 6 |
5
|
ancoms |
|- ( ( A e. RR /\ B e. RR ) -> ( B - A ) e. RR ) |
| 7 |
6
|
rehalfcld |
|- ( ( A e. RR /\ B e. RR ) -> ( ( B - A ) / 2 ) e. RR ) |
| 8 |
1
|
bl2ioo |
|- ( ( ( ( B + A ) / 2 ) e. RR /\ ( ( B - A ) / 2 ) e. RR ) -> ( ( ( B + A ) / 2 ) ( ball ` D ) ( ( B - A ) / 2 ) ) = ( ( ( ( B + A ) / 2 ) - ( ( B - A ) / 2 ) ) (,) ( ( ( B + A ) / 2 ) + ( ( B - A ) / 2 ) ) ) ) |
| 9 |
4 7 8
|
syl2anc |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( B + A ) / 2 ) ( ball ` D ) ( ( B - A ) / 2 ) ) = ( ( ( ( B + A ) / 2 ) - ( ( B - A ) / 2 ) ) (,) ( ( ( B + A ) / 2 ) + ( ( B - A ) / 2 ) ) ) ) |
| 10 |
|
recn |
|- ( B e. RR -> B e. CC ) |
| 11 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 12 |
|
addcom |
|- ( ( B e. CC /\ A e. CC ) -> ( B + A ) = ( A + B ) ) |
| 13 |
10 11 12
|
syl2anr |
|- ( ( A e. RR /\ B e. RR ) -> ( B + A ) = ( A + B ) ) |
| 14 |
13
|
oveq1d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( B + A ) / 2 ) = ( ( A + B ) / 2 ) ) |
| 15 |
14
|
oveq1d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( B + A ) / 2 ) ( ball ` D ) ( ( B - A ) / 2 ) ) = ( ( ( A + B ) / 2 ) ( ball ` D ) ( ( B - A ) / 2 ) ) ) |
| 16 |
|
halfaddsub |
|- ( ( B e. CC /\ A e. CC ) -> ( ( ( ( B + A ) / 2 ) + ( ( B - A ) / 2 ) ) = B /\ ( ( ( B + A ) / 2 ) - ( ( B - A ) / 2 ) ) = A ) ) |
| 17 |
10 11 16
|
syl2anr |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( ( B + A ) / 2 ) + ( ( B - A ) / 2 ) ) = B /\ ( ( ( B + A ) / 2 ) - ( ( B - A ) / 2 ) ) = A ) ) |
| 18 |
17
|
simprd |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( B + A ) / 2 ) - ( ( B - A ) / 2 ) ) = A ) |
| 19 |
17
|
simpld |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( B + A ) / 2 ) + ( ( B - A ) / 2 ) ) = B ) |
| 20 |
18 19
|
oveq12d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( ( B + A ) / 2 ) - ( ( B - A ) / 2 ) ) (,) ( ( ( B + A ) / 2 ) + ( ( B - A ) / 2 ) ) ) = ( A (,) B ) ) |
| 21 |
9 15 20
|
3eqtr3rd |
|- ( ( A e. RR /\ B e. RR ) -> ( A (,) B ) = ( ( ( A + B ) / 2 ) ( ball ` D ) ( ( B - A ) / 2 ) ) ) |