Step |
Hyp |
Ref |
Expression |
1 |
|
iooabslt.1 |
|- ( ph -> A e. RR ) |
2 |
|
iooabslt.2 |
|- ( ph -> B e. RR ) |
3 |
|
iooabslt.3 |
|- ( ph -> C e. ( ( A - B ) (,) ( A + B ) ) ) |
4 |
1
|
recnd |
|- ( ph -> A e. CC ) |
5 |
|
elioore |
|- ( C e. ( ( A - B ) (,) ( A + B ) ) -> C e. RR ) |
6 |
3 5
|
syl |
|- ( ph -> C e. RR ) |
7 |
6
|
recnd |
|- ( ph -> C e. CC ) |
8 |
|
eqid |
|- ( abs o. - ) = ( abs o. - ) |
9 |
8
|
cnmetdval |
|- ( ( A e. CC /\ C e. CC ) -> ( A ( abs o. - ) C ) = ( abs ` ( A - C ) ) ) |
10 |
4 7 9
|
syl2anc |
|- ( ph -> ( A ( abs o. - ) C ) = ( abs ` ( A - C ) ) ) |
11 |
|
eqid |
|- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |
12 |
11
|
bl2ioo |
|- ( ( A e. RR /\ B e. RR ) -> ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) B ) = ( ( A - B ) (,) ( A + B ) ) ) |
13 |
1 2 12
|
syl2anc |
|- ( ph -> ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) B ) = ( ( A - B ) (,) ( A + B ) ) ) |
14 |
3 13
|
eleqtrrd |
|- ( ph -> C e. ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) B ) ) |
15 |
|
cnxmet |
|- ( abs o. - ) e. ( *Met ` CC ) |
16 |
15
|
a1i |
|- ( ph -> ( abs o. - ) e. ( *Met ` CC ) ) |
17 |
4 1
|
elind |
|- ( ph -> A e. ( CC i^i RR ) ) |
18 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
19 |
11
|
blres |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ A e. ( CC i^i RR ) /\ B e. RR* ) -> ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) B ) = ( ( A ( ball ` ( abs o. - ) ) B ) i^i RR ) ) |
20 |
16 17 18 19
|
syl3anc |
|- ( ph -> ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) B ) = ( ( A ( ball ` ( abs o. - ) ) B ) i^i RR ) ) |
21 |
14 20
|
eleqtrd |
|- ( ph -> C e. ( ( A ( ball ` ( abs o. - ) ) B ) i^i RR ) ) |
22 |
|
elin |
|- ( C e. ( ( A ( ball ` ( abs o. - ) ) B ) i^i RR ) <-> ( C e. ( A ( ball ` ( abs o. - ) ) B ) /\ C e. RR ) ) |
23 |
21 22
|
sylib |
|- ( ph -> ( C e. ( A ( ball ` ( abs o. - ) ) B ) /\ C e. RR ) ) |
24 |
23
|
simpld |
|- ( ph -> C e. ( A ( ball ` ( abs o. - ) ) B ) ) |
25 |
|
elbl |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ A e. CC /\ B e. RR* ) -> ( C e. ( A ( ball ` ( abs o. - ) ) B ) <-> ( C e. CC /\ ( A ( abs o. - ) C ) < B ) ) ) |
26 |
16 4 18 25
|
syl3anc |
|- ( ph -> ( C e. ( A ( ball ` ( abs o. - ) ) B ) <-> ( C e. CC /\ ( A ( abs o. - ) C ) < B ) ) ) |
27 |
24 26
|
mpbid |
|- ( ph -> ( C e. CC /\ ( A ( abs o. - ) C ) < B ) ) |
28 |
27
|
simprd |
|- ( ph -> ( A ( abs o. - ) C ) < B ) |
29 |
10 28
|
eqbrtrrd |
|- ( ph -> ( abs ` ( A - C ) ) < B ) |