| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ioodvbdlimc1.a | 
							 |-  ( ph -> A e. RR )  | 
						
						
							| 2 | 
							
								
							 | 
							ioodvbdlimc1.b | 
							 |-  ( ph -> B e. RR )  | 
						
						
							| 3 | 
							
								
							 | 
							ioodvbdlimc1.f | 
							 |-  ( ph -> F : ( A (,) B ) --> RR )  | 
						
						
							| 4 | 
							
								
							 | 
							ioodvbdlimc1.dmdv | 
							 |-  ( ph -> dom ( RR _D F ) = ( A (,) B ) )  | 
						
						
							| 5 | 
							
								
							 | 
							ioodvbdlimc1.dvbd | 
							 |-  ( ph -> E. y e. RR A. x e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` x ) ) <_ y )  | 
						
						
							| 6 | 
							
								1
							 | 
							adantr | 
							 |-  ( ( ph /\ A < B ) -> A e. RR )  | 
						
						
							| 7 | 
							
								2
							 | 
							adantr | 
							 |-  ( ( ph /\ A < B ) -> B e. RR )  | 
						
						
							| 8 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ A < B ) -> A < B )  | 
						
						
							| 9 | 
							
								3
							 | 
							adantr | 
							 |-  ( ( ph /\ A < B ) -> F : ( A (,) B ) --> RR )  | 
						
						
							| 10 | 
							
								4
							 | 
							adantr | 
							 |-  ( ( ph /\ A < B ) -> dom ( RR _D F ) = ( A (,) B ) )  | 
						
						
							| 11 | 
							
								5
							 | 
							adantr | 
							 |-  ( ( ph /\ A < B ) -> E. y e. RR A. x e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` x ) ) <_ y )  | 
						
						
							| 12 | 
							
								
							 | 
							2fveq3 | 
							 |-  ( y = x -> ( abs ` ( ( RR _D F ) ` y ) ) = ( abs ` ( ( RR _D F ) ` x ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							cbvmptv | 
							 |-  ( y e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` y ) ) ) = ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							rneqi | 
							 |-  ran ( y e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` y ) ) ) = ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							supeq1i | 
							 |-  sup ( ran ( y e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` y ) ) ) , RR , < ) = sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < )  | 
						
						
							| 16 | 
							
								
							 | 
							eqid | 
							 |-  ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) = ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 )  | 
						
						
							| 17 | 
							
								
							 | 
							oveq2 | 
							 |-  ( j = k -> ( 1 / j ) = ( 1 / k ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							oveq2d | 
							 |-  ( j = k -> ( A + ( 1 / j ) ) = ( A + ( 1 / k ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							fveq2d | 
							 |-  ( j = k -> ( F ` ( A + ( 1 / j ) ) ) = ( F ` ( A + ( 1 / k ) ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							cbvmptv | 
							 |-  ( j e. ( ZZ>= ` ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) |-> ( F ` ( A + ( 1 / j ) ) ) ) = ( k e. ( ZZ>= ` ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) |-> ( F ` ( A + ( 1 / k ) ) ) )  | 
						
						
							| 21 | 
							
								18
							 | 
							cbvmptv | 
							 |-  ( j e. ( ZZ>= ` ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) |-> ( A + ( 1 / j ) ) ) = ( k e. ( ZZ>= ` ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) |-> ( A + ( 1 / k ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							eqid | 
							 |-  if ( ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) <_ ( ( |_ ` ( sup ( ran ( y e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` y ) ) ) , RR , < ) / ( x / 2 ) ) ) + 1 ) , ( ( |_ ` ( sup ( ran ( y e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` y ) ) ) , RR , < ) / ( x / 2 ) ) ) + 1 ) , ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) = if ( ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) <_ ( ( |_ ` ( sup ( ran ( y e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` y ) ) ) , RR , < ) / ( x / 2 ) ) ) + 1 ) , ( ( |_ ` ( sup ( ran ( y e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` y ) ) ) , RR , < ) / ( x / 2 ) ) ) + 1 ) , ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) )  | 
						
						
							| 23 | 
							
								
							 | 
							biid | 
							 |-  ( ( ( ( ( ( ( ph /\ A < B ) /\ x e. RR+ ) /\ k e. ( ZZ>= ` if ( ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) <_ ( ( |_ ` ( sup ( ran ( y e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` y ) ) ) , RR , < ) / ( x / 2 ) ) ) + 1 ) , ( ( |_ ` ( sup ( ran ( y e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` y ) ) ) , RR , < ) / ( x / 2 ) ) ) + 1 ) , ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) ) ) /\ ( abs ` ( ( ( j e. ( ZZ>= ` ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) |-> ( F ` ( A + ( 1 / j ) ) ) ) ` k ) - ( limsup ` ( j e. ( ZZ>= ` ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) |-> ( F ` ( A + ( 1 / j ) ) ) ) ) ) ) < ( x / 2 ) ) /\ z e. ( A (,) B ) ) /\ ( abs ` ( z - A ) ) < ( 1 / k ) ) <-> ( ( ( ( ( ( ph /\ A < B ) /\ x e. RR+ ) /\ k e. ( ZZ>= ` if ( ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) <_ ( ( |_ ` ( sup ( ran ( y e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` y ) ) ) , RR , < ) / ( x / 2 ) ) ) + 1 ) , ( ( |_ ` ( sup ( ran ( y e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` y ) ) ) , RR , < ) / ( x / 2 ) ) ) + 1 ) , ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) ) ) /\ ( abs ` ( ( ( j e. ( ZZ>= ` ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) |-> ( F ` ( A + ( 1 / j ) ) ) ) ` k ) - ( limsup ` ( j e. ( ZZ>= ` ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) |-> ( F ` ( A + ( 1 / j ) ) ) ) ) ) ) < ( x / 2 ) ) /\ z e. ( A (,) B ) ) /\ ( abs ` ( z - A ) ) < ( 1 / k ) ) )  | 
						
						
							| 24 | 
							
								6 7 8 9 10 11 15 16 20 21 22 23
							 | 
							ioodvbdlimc1lem2 | 
							 |-  ( ( ph /\ A < B ) -> ( limsup ` ( j e. ( ZZ>= ` ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) |-> ( F ` ( A + ( 1 / j ) ) ) ) ) e. ( F limCC A ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							ne0d | 
							 |-  ( ( ph /\ A < B ) -> ( F limCC A ) =/= (/) )  | 
						
						
							| 26 | 
							
								
							 | 
							ax-resscn | 
							 |-  RR C_ CC  | 
						
						
							| 27 | 
							
								26
							 | 
							a1i | 
							 |-  ( ph -> RR C_ CC )  | 
						
						
							| 28 | 
							
								3 27
							 | 
							fssd | 
							 |-  ( ph -> F : ( A (,) B ) --> CC )  | 
						
						
							| 29 | 
							
								28
							 | 
							adantr | 
							 |-  ( ( ph /\ B <_ A ) -> F : ( A (,) B ) --> CC )  | 
						
						
							| 30 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ B <_ A ) -> B <_ A )  | 
						
						
							| 31 | 
							
								1
							 | 
							rexrd | 
							 |-  ( ph -> A e. RR* )  | 
						
						
							| 32 | 
							
								31
							 | 
							adantr | 
							 |-  ( ( ph /\ B <_ A ) -> A e. RR* )  | 
						
						
							| 33 | 
							
								2
							 | 
							rexrd | 
							 |-  ( ph -> B e. RR* )  | 
						
						
							| 34 | 
							
								33
							 | 
							adantr | 
							 |-  ( ( ph /\ B <_ A ) -> B e. RR* )  | 
						
						
							| 35 | 
							
								
							 | 
							ioo0 | 
							 |-  ( ( A e. RR* /\ B e. RR* ) -> ( ( A (,) B ) = (/) <-> B <_ A ) )  | 
						
						
							| 36 | 
							
								32 34 35
							 | 
							syl2anc | 
							 |-  ( ( ph /\ B <_ A ) -> ( ( A (,) B ) = (/) <-> B <_ A ) )  | 
						
						
							| 37 | 
							
								30 36
							 | 
							mpbird | 
							 |-  ( ( ph /\ B <_ A ) -> ( A (,) B ) = (/) )  | 
						
						
							| 38 | 
							
								37
							 | 
							feq2d | 
							 |-  ( ( ph /\ B <_ A ) -> ( F : ( A (,) B ) --> CC <-> F : (/) --> CC ) )  | 
						
						
							| 39 | 
							
								29 38
							 | 
							mpbid | 
							 |-  ( ( ph /\ B <_ A ) -> F : (/) --> CC )  | 
						
						
							| 40 | 
							
								1
							 | 
							recnd | 
							 |-  ( ph -> A e. CC )  | 
						
						
							| 41 | 
							
								40
							 | 
							adantr | 
							 |-  ( ( ph /\ B <_ A ) -> A e. CC )  | 
						
						
							| 42 | 
							
								39 41
							 | 
							limcdm0 | 
							 |-  ( ( ph /\ B <_ A ) -> ( F limCC A ) = CC )  | 
						
						
							| 43 | 
							
								
							 | 
							0cn | 
							 |-  0 e. CC  | 
						
						
							| 44 | 
							
								43
							 | 
							ne0ii | 
							 |-  CC =/= (/)  | 
						
						
							| 45 | 
							
								44
							 | 
							a1i | 
							 |-  ( ( ph /\ B <_ A ) -> CC =/= (/) )  | 
						
						
							| 46 | 
							
								42 45
							 | 
							eqnetrd | 
							 |-  ( ( ph /\ B <_ A ) -> ( F limCC A ) =/= (/) )  | 
						
						
							| 47 | 
							
								25 46 1 2
							 | 
							ltlecasei | 
							 |-  ( ph -> ( F limCC A ) =/= (/) )  |