Metamath Proof Explorer


Theorem ioogtlb

Description: An element of a closed interval is greater than its lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion ioogtlb
|- ( ( A e. RR* /\ B e. RR* /\ C e. ( A (,) B ) ) -> A < C )

Proof

Step Hyp Ref Expression
1 elioo2
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A (,) B ) <-> ( C e. RR /\ A < C /\ C < B ) ) )
2 simp2
 |-  ( ( C e. RR /\ A < C /\ C < B ) -> A < C )
3 1 2 syl6bi
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A (,) B ) -> A < C ) )
4 3 3impia
 |-  ( ( A e. RR* /\ B e. RR* /\ C e. ( A (,) B ) ) -> A < C )