Metamath Proof Explorer


Theorem ioogtlbd

Description: An element of a closed interval is greater than its lower bound. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses ioogtlbd.1
|- ( ph -> A e. RR* )
ioogtlbd.2
|- ( ph -> B e. RR* )
ioogtlbd.3
|- ( ph -> C e. ( A (,) B ) )
Assertion ioogtlbd
|- ( ph -> A < C )

Proof

Step Hyp Ref Expression
1 ioogtlbd.1
 |-  ( ph -> A e. RR* )
2 ioogtlbd.2
 |-  ( ph -> B e. RR* )
3 ioogtlbd.3
 |-  ( ph -> C e. ( A (,) B ) )
4 ioogtlb
 |-  ( ( A e. RR* /\ B e. RR* /\ C e. ( A (,) B ) ) -> A < C )
5 1 2 3 4 syl3anc
 |-  ( ph -> A < C )