| Step |
Hyp |
Ref |
Expression |
| 1 |
|
disjr |
|- ( ( ( A (,) B ) i^i { A , B } ) = (/) <-> A. x e. { A , B } -. x e. ( A (,) B ) ) |
| 2 |
|
elpri |
|- ( x e. { A , B } -> ( x = A \/ x = B ) ) |
| 3 |
|
lbioo |
|- -. A e. ( A (,) B ) |
| 4 |
|
eleq1 |
|- ( x = A -> ( x e. ( A (,) B ) <-> A e. ( A (,) B ) ) ) |
| 5 |
3 4
|
mtbiri |
|- ( x = A -> -. x e. ( A (,) B ) ) |
| 6 |
|
ubioo |
|- -. B e. ( A (,) B ) |
| 7 |
|
eleq1 |
|- ( x = B -> ( x e. ( A (,) B ) <-> B e. ( A (,) B ) ) ) |
| 8 |
6 7
|
mtbiri |
|- ( x = B -> -. x e. ( A (,) B ) ) |
| 9 |
5 8
|
jaoi |
|- ( ( x = A \/ x = B ) -> -. x e. ( A (,) B ) ) |
| 10 |
2 9
|
syl |
|- ( x e. { A , B } -> -. x e. ( A (,) B ) ) |
| 11 |
1 10
|
mprgbir |
|- ( ( A (,) B ) i^i { A , B } ) = (/) |