Description: An element of an open interval is less than its upper bound. (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iooltubd.1 | |- ( ph -> A e. RR* ) |
|
iooltubd.2 | |- ( ph -> B e. RR* ) |
||
iooltubd.3 | |- ( ph -> C e. ( A (,) B ) ) |
||
Assertion | iooltubd | |- ( ph -> C < B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iooltubd.1 | |- ( ph -> A e. RR* ) |
|
2 | iooltubd.2 | |- ( ph -> B e. RR* ) |
|
3 | iooltubd.3 | |- ( ph -> C e. ( A (,) B ) ) |
|
4 | iooltub | |- ( ( A e. RR* /\ B e. RR* /\ C e. ( A (,) B ) ) -> C < B ) |
|
5 | 1 2 3 4 | syl3anc | |- ( ph -> C < B ) |