| Step |
Hyp |
Ref |
Expression |
| 1 |
|
snunioo |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( { A } u. ( A (,) B ) ) = ( A [,) B ) ) |
| 2 |
1
|
3expa |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> ( { A } u. ( A (,) B ) ) = ( A [,) B ) ) |
| 3 |
2
|
adantrr |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < B /\ -oo < A ) ) -> ( { A } u. ( A (,) B ) ) = ( A [,) B ) ) |
| 4 |
|
lbico1 |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> A e. ( A [,) B ) ) |
| 5 |
4
|
3expa |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> A e. ( A [,) B ) ) |
| 6 |
5
|
adantrr |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < B /\ -oo < A ) ) -> A e. ( A [,) B ) ) |
| 7 |
6
|
snssd |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < B /\ -oo < A ) ) -> { A } C_ ( A [,) B ) ) |
| 8 |
|
iccid |
|- ( A e. RR* -> ( A [,] A ) = { A } ) |
| 9 |
8
|
ad2antrr |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < B /\ -oo < A ) ) -> ( A [,] A ) = { A } ) |
| 10 |
9
|
ineq1d |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < B /\ -oo < A ) ) -> ( ( A [,] A ) i^i ( A (,) B ) ) = ( { A } i^i ( A (,) B ) ) ) |
| 11 |
|
simpll |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < B /\ -oo < A ) ) -> A e. RR* ) |
| 12 |
|
simplr |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < B /\ -oo < A ) ) -> B e. RR* ) |
| 13 |
|
df-icc |
|- [,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z <_ y ) } ) |
| 14 |
|
df-ioo |
|- (,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z < y ) } ) |
| 15 |
|
xrltnle |
|- ( ( A e. RR* /\ w e. RR* ) -> ( A < w <-> -. w <_ A ) ) |
| 16 |
13 14 15
|
ixxdisj |
|- ( ( A e. RR* /\ A e. RR* /\ B e. RR* ) -> ( ( A [,] A ) i^i ( A (,) B ) ) = (/) ) |
| 17 |
11 11 12 16
|
syl3anc |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < B /\ -oo < A ) ) -> ( ( A [,] A ) i^i ( A (,) B ) ) = (/) ) |
| 18 |
10 17
|
eqtr3d |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < B /\ -oo < A ) ) -> ( { A } i^i ( A (,) B ) ) = (/) ) |
| 19 |
|
uneqdifeq |
|- ( ( { A } C_ ( A [,) B ) /\ ( { A } i^i ( A (,) B ) ) = (/) ) -> ( ( { A } u. ( A (,) B ) ) = ( A [,) B ) <-> ( ( A [,) B ) \ { A } ) = ( A (,) B ) ) ) |
| 20 |
7 18 19
|
syl2anc |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < B /\ -oo < A ) ) -> ( ( { A } u. ( A (,) B ) ) = ( A [,) B ) <-> ( ( A [,) B ) \ { A } ) = ( A (,) B ) ) ) |
| 21 |
3 20
|
mpbid |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < B /\ -oo < A ) ) -> ( ( A [,) B ) \ { A } ) = ( A (,) B ) ) |
| 22 |
|
mnfxr |
|- -oo e. RR* |
| 23 |
22
|
a1i |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < B /\ -oo < A ) ) -> -oo e. RR* ) |
| 24 |
|
simprr |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < B /\ -oo < A ) ) -> -oo < A ) |
| 25 |
|
simprl |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < B /\ -oo < A ) ) -> A < B ) |
| 26 |
|
xrre2 |
|- ( ( ( -oo e. RR* /\ A e. RR* /\ B e. RR* ) /\ ( -oo < A /\ A < B ) ) -> A e. RR ) |
| 27 |
23 11 12 24 25 26
|
syl32anc |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < B /\ -oo < A ) ) -> A e. RR ) |
| 28 |
|
icombl |
|- ( ( A e. RR /\ B e. RR* ) -> ( A [,) B ) e. dom vol ) |
| 29 |
27 12 28
|
syl2anc |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < B /\ -oo < A ) ) -> ( A [,) B ) e. dom vol ) |
| 30 |
27
|
snssd |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < B /\ -oo < A ) ) -> { A } C_ RR ) |
| 31 |
|
ovolsn |
|- ( A e. RR -> ( vol* ` { A } ) = 0 ) |
| 32 |
27 31
|
syl |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < B /\ -oo < A ) ) -> ( vol* ` { A } ) = 0 ) |
| 33 |
|
nulmbl |
|- ( ( { A } C_ RR /\ ( vol* ` { A } ) = 0 ) -> { A } e. dom vol ) |
| 34 |
30 32 33
|
syl2anc |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < B /\ -oo < A ) ) -> { A } e. dom vol ) |
| 35 |
|
difmbl |
|- ( ( ( A [,) B ) e. dom vol /\ { A } e. dom vol ) -> ( ( A [,) B ) \ { A } ) e. dom vol ) |
| 36 |
29 34 35
|
syl2anc |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < B /\ -oo < A ) ) -> ( ( A [,) B ) \ { A } ) e. dom vol ) |
| 37 |
21 36
|
eqeltrrd |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < B /\ -oo < A ) ) -> ( A (,) B ) e. dom vol ) |
| 38 |
37
|
expr |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> ( -oo < A -> ( A (,) B ) e. dom vol ) ) |
| 39 |
|
uncom |
|- ( ( B [,) +oo ) u. ( -oo (,) B ) ) = ( ( -oo (,) B ) u. ( B [,) +oo ) ) |
| 40 |
22
|
a1i |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> -oo e. RR* ) |
| 41 |
|
simplr |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> B e. RR* ) |
| 42 |
|
pnfxr |
|- +oo e. RR* |
| 43 |
42
|
a1i |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> +oo e. RR* ) |
| 44 |
|
simpll |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> A e. RR* ) |
| 45 |
|
mnfle |
|- ( A e. RR* -> -oo <_ A ) |
| 46 |
45
|
ad2antrr |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> -oo <_ A ) |
| 47 |
|
simpr |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> A < B ) |
| 48 |
40 44 41 46 47
|
xrlelttrd |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> -oo < B ) |
| 49 |
|
pnfge |
|- ( B e. RR* -> B <_ +oo ) |
| 50 |
41 49
|
syl |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> B <_ +oo ) |
| 51 |
|
df-ico |
|- [,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z < y ) } ) |
| 52 |
|
xrlenlt |
|- ( ( B e. RR* /\ w e. RR* ) -> ( B <_ w <-> -. w < B ) ) |
| 53 |
|
xrltletr |
|- ( ( w e. RR* /\ B e. RR* /\ +oo e. RR* ) -> ( ( w < B /\ B <_ +oo ) -> w < +oo ) ) |
| 54 |
|
xrltletr |
|- ( ( -oo e. RR* /\ B e. RR* /\ w e. RR* ) -> ( ( -oo < B /\ B <_ w ) -> -oo < w ) ) |
| 55 |
14 51 52 14 53 54
|
ixxun |
|- ( ( ( -oo e. RR* /\ B e. RR* /\ +oo e. RR* ) /\ ( -oo < B /\ B <_ +oo ) ) -> ( ( -oo (,) B ) u. ( B [,) +oo ) ) = ( -oo (,) +oo ) ) |
| 56 |
40 41 43 48 50 55
|
syl32anc |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> ( ( -oo (,) B ) u. ( B [,) +oo ) ) = ( -oo (,) +oo ) ) |
| 57 |
39 56
|
eqtrid |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> ( ( B [,) +oo ) u. ( -oo (,) B ) ) = ( -oo (,) +oo ) ) |
| 58 |
|
ioomax |
|- ( -oo (,) +oo ) = RR |
| 59 |
57 58
|
eqtrdi |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> ( ( B [,) +oo ) u. ( -oo (,) B ) ) = RR ) |
| 60 |
|
ssun1 |
|- ( B [,) +oo ) C_ ( ( B [,) +oo ) u. ( -oo (,) B ) ) |
| 61 |
60 59
|
sseqtrid |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> ( B [,) +oo ) C_ RR ) |
| 62 |
|
incom |
|- ( ( B [,) +oo ) i^i ( -oo (,) B ) ) = ( ( -oo (,) B ) i^i ( B [,) +oo ) ) |
| 63 |
14 51 52
|
ixxdisj |
|- ( ( -oo e. RR* /\ B e. RR* /\ +oo e. RR* ) -> ( ( -oo (,) B ) i^i ( B [,) +oo ) ) = (/) ) |
| 64 |
40 41 43 63
|
syl3anc |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> ( ( -oo (,) B ) i^i ( B [,) +oo ) ) = (/) ) |
| 65 |
62 64
|
eqtrid |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> ( ( B [,) +oo ) i^i ( -oo (,) B ) ) = (/) ) |
| 66 |
|
uneqdifeq |
|- ( ( ( B [,) +oo ) C_ RR /\ ( ( B [,) +oo ) i^i ( -oo (,) B ) ) = (/) ) -> ( ( ( B [,) +oo ) u. ( -oo (,) B ) ) = RR <-> ( RR \ ( B [,) +oo ) ) = ( -oo (,) B ) ) ) |
| 67 |
61 65 66
|
syl2anc |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> ( ( ( B [,) +oo ) u. ( -oo (,) B ) ) = RR <-> ( RR \ ( B [,) +oo ) ) = ( -oo (,) B ) ) ) |
| 68 |
59 67
|
mpbid |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> ( RR \ ( B [,) +oo ) ) = ( -oo (,) B ) ) |
| 69 |
|
rembl |
|- RR e. dom vol |
| 70 |
|
xrleloe |
|- ( ( B e. RR* /\ +oo e. RR* ) -> ( B <_ +oo <-> ( B < +oo \/ B = +oo ) ) ) |
| 71 |
41 42 70
|
sylancl |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> ( B <_ +oo <-> ( B < +oo \/ B = +oo ) ) ) |
| 72 |
50 71
|
mpbid |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> ( B < +oo \/ B = +oo ) ) |
| 73 |
|
xrre2 |
|- ( ( ( A e. RR* /\ B e. RR* /\ +oo e. RR* ) /\ ( A < B /\ B < +oo ) ) -> B e. RR ) |
| 74 |
73
|
expr |
|- ( ( ( A e. RR* /\ B e. RR* /\ +oo e. RR* ) /\ A < B ) -> ( B < +oo -> B e. RR ) ) |
| 75 |
42 74
|
mp3anl3 |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> ( B < +oo -> B e. RR ) ) |
| 76 |
75
|
orim1d |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> ( ( B < +oo \/ B = +oo ) -> ( B e. RR \/ B = +oo ) ) ) |
| 77 |
72 76
|
mpd |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> ( B e. RR \/ B = +oo ) ) |
| 78 |
|
icombl1 |
|- ( B e. RR -> ( B [,) +oo ) e. dom vol ) |
| 79 |
|
oveq1 |
|- ( B = +oo -> ( B [,) +oo ) = ( +oo [,) +oo ) ) |
| 80 |
|
pnfge |
|- ( +oo e. RR* -> +oo <_ +oo ) |
| 81 |
42 80
|
ax-mp |
|- +oo <_ +oo |
| 82 |
|
ico0 |
|- ( ( +oo e. RR* /\ +oo e. RR* ) -> ( ( +oo [,) +oo ) = (/) <-> +oo <_ +oo ) ) |
| 83 |
42 42 82
|
mp2an |
|- ( ( +oo [,) +oo ) = (/) <-> +oo <_ +oo ) |
| 84 |
81 83
|
mpbir |
|- ( +oo [,) +oo ) = (/) |
| 85 |
79 84
|
eqtrdi |
|- ( B = +oo -> ( B [,) +oo ) = (/) ) |
| 86 |
|
0mbl |
|- (/) e. dom vol |
| 87 |
85 86
|
eqeltrdi |
|- ( B = +oo -> ( B [,) +oo ) e. dom vol ) |
| 88 |
78 87
|
jaoi |
|- ( ( B e. RR \/ B = +oo ) -> ( B [,) +oo ) e. dom vol ) |
| 89 |
77 88
|
syl |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> ( B [,) +oo ) e. dom vol ) |
| 90 |
|
difmbl |
|- ( ( RR e. dom vol /\ ( B [,) +oo ) e. dom vol ) -> ( RR \ ( B [,) +oo ) ) e. dom vol ) |
| 91 |
69 89 90
|
sylancr |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> ( RR \ ( B [,) +oo ) ) e. dom vol ) |
| 92 |
68 91
|
eqeltrrd |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> ( -oo (,) B ) e. dom vol ) |
| 93 |
|
oveq1 |
|- ( -oo = A -> ( -oo (,) B ) = ( A (,) B ) ) |
| 94 |
93
|
eleq1d |
|- ( -oo = A -> ( ( -oo (,) B ) e. dom vol <-> ( A (,) B ) e. dom vol ) ) |
| 95 |
92 94
|
syl5ibcom |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> ( -oo = A -> ( A (,) B ) e. dom vol ) ) |
| 96 |
|
xrleloe |
|- ( ( -oo e. RR* /\ A e. RR* ) -> ( -oo <_ A <-> ( -oo < A \/ -oo = A ) ) ) |
| 97 |
22 44 96
|
sylancr |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> ( -oo <_ A <-> ( -oo < A \/ -oo = A ) ) ) |
| 98 |
46 97
|
mpbid |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> ( -oo < A \/ -oo = A ) ) |
| 99 |
38 95 98
|
mpjaod |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> ( A (,) B ) e. dom vol ) |
| 100 |
|
ioo0 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( A (,) B ) = (/) <-> B <_ A ) ) |
| 101 |
|
xrlenlt |
|- ( ( B e. RR* /\ A e. RR* ) -> ( B <_ A <-> -. A < B ) ) |
| 102 |
101
|
ancoms |
|- ( ( A e. RR* /\ B e. RR* ) -> ( B <_ A <-> -. A < B ) ) |
| 103 |
100 102
|
bitrd |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( A (,) B ) = (/) <-> -. A < B ) ) |
| 104 |
103
|
biimpar |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. A < B ) -> ( A (,) B ) = (/) ) |
| 105 |
104 86
|
eqeltrdi |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. A < B ) -> ( A (,) B ) e. dom vol ) |
| 106 |
99 105
|
pm2.61dan |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A (,) B ) e. dom vol ) |
| 107 |
|
ndmioo |
|- ( -. ( A e. RR* /\ B e. RR* ) -> ( A (,) B ) = (/) ) |
| 108 |
107 86
|
eqeltrdi |
|- ( -. ( A e. RR* /\ B e. RR* ) -> ( A (,) B ) e. dom vol ) |
| 109 |
106 108
|
pm2.61i |
|- ( A (,) B ) e. dom vol |