| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elxr |  |-  ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) | 
						
							| 2 |  | ioossre |  |-  ( A (,) +oo ) C_ RR | 
						
							| 3 | 2 | a1i |  |-  ( A e. RR -> ( A (,) +oo ) C_ RR ) | 
						
							| 4 |  | elpwi |  |-  ( x e. ~P RR -> x C_ RR ) | 
						
							| 5 |  | simplrl |  |-  ( ( ( A e. RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) /\ y e. RR+ ) -> x C_ RR ) | 
						
							| 6 |  | simplrr |  |-  ( ( ( A e. RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) /\ y e. RR+ ) -> ( vol* ` x ) e. RR ) | 
						
							| 7 |  | simpr |  |-  ( ( ( A e. RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) /\ y e. RR+ ) -> y e. RR+ ) | 
						
							| 8 |  | eqid |  |-  seq 1 ( + , ( ( abs o. - ) o. f ) ) = seq 1 ( + , ( ( abs o. - ) o. f ) ) | 
						
							| 9 | 8 | ovolgelb |  |-  ( ( x C_ RR /\ ( vol* ` x ) e. RR /\ y e. RR+ ) -> E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( x C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` x ) + y ) ) ) | 
						
							| 10 | 5 6 7 9 | syl3anc |  |-  ( ( ( A e. RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) /\ y e. RR+ ) -> E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( x C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` x ) + y ) ) ) | 
						
							| 11 |  | eqid |  |-  ( A (,) +oo ) = ( A (,) +oo ) | 
						
							| 12 |  | simplll |  |-  ( ( ( ( A e. RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) /\ y e. RR+ ) /\ ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( x C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` x ) + y ) ) ) ) -> A e. RR ) | 
						
							| 13 | 5 | adantr |  |-  ( ( ( ( A e. RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) /\ y e. RR+ ) /\ ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( x C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` x ) + y ) ) ) ) -> x C_ RR ) | 
						
							| 14 | 6 | adantr |  |-  ( ( ( ( A e. RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) /\ y e. RR+ ) /\ ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( x C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` x ) + y ) ) ) ) -> ( vol* ` x ) e. RR ) | 
						
							| 15 |  | simplr |  |-  ( ( ( ( A e. RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) /\ y e. RR+ ) /\ ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( x C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` x ) + y ) ) ) ) -> y e. RR+ ) | 
						
							| 16 |  | eqid |  |-  seq 1 ( + , ( ( abs o. - ) o. ( m e. NN |-> <. if ( if ( ( 1st ` ( f ` m ) ) <_ A , A , ( 1st ` ( f ` m ) ) ) <_ ( 2nd ` ( f ` m ) ) , if ( ( 1st ` ( f ` m ) ) <_ A , A , ( 1st ` ( f ` m ) ) ) , ( 2nd ` ( f ` m ) ) ) , ( 2nd ` ( f ` m ) ) >. ) ) ) = seq 1 ( + , ( ( abs o. - ) o. ( m e. NN |-> <. if ( if ( ( 1st ` ( f ` m ) ) <_ A , A , ( 1st ` ( f ` m ) ) ) <_ ( 2nd ` ( f ` m ) ) , if ( ( 1st ` ( f ` m ) ) <_ A , A , ( 1st ` ( f ` m ) ) ) , ( 2nd ` ( f ` m ) ) ) , ( 2nd ` ( f ` m ) ) >. ) ) ) | 
						
							| 17 |  | eqid |  |-  seq 1 ( + , ( ( abs o. - ) o. ( m e. NN |-> <. ( 1st ` ( f ` m ) ) , if ( if ( ( 1st ` ( f ` m ) ) <_ A , A , ( 1st ` ( f ` m ) ) ) <_ ( 2nd ` ( f ` m ) ) , if ( ( 1st ` ( f ` m ) ) <_ A , A , ( 1st ` ( f ` m ) ) ) , ( 2nd ` ( f ` m ) ) ) >. ) ) ) = seq 1 ( + , ( ( abs o. - ) o. ( m e. NN |-> <. ( 1st ` ( f ` m ) ) , if ( if ( ( 1st ` ( f ` m ) ) <_ A , A , ( 1st ` ( f ` m ) ) ) <_ ( 2nd ` ( f ` m ) ) , if ( ( 1st ` ( f ` m ) ) <_ A , A , ( 1st ` ( f ` m ) ) ) , ( 2nd ` ( f ` m ) ) ) >. ) ) ) | 
						
							| 18 |  | simprl |  |-  ( ( ( ( A e. RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) /\ y e. RR+ ) /\ ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( x C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` x ) + y ) ) ) ) -> f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) | 
						
							| 19 |  | elovolmlem |  |-  ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) <-> f : NN --> ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 20 | 18 19 | sylib |  |-  ( ( ( ( A e. RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) /\ y e. RR+ ) /\ ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( x C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` x ) + y ) ) ) ) -> f : NN --> ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 21 |  | simprrl |  |-  ( ( ( ( A e. RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) /\ y e. RR+ ) /\ ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( x C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` x ) + y ) ) ) ) -> x C_ U. ran ( (,) o. f ) ) | 
						
							| 22 |  | simprrr |  |-  ( ( ( ( A e. RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) /\ y e. RR+ ) /\ ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( x C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` x ) + y ) ) ) ) -> sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` x ) + y ) ) | 
						
							| 23 |  | eqid |  |-  ( 1st ` ( f ` n ) ) = ( 1st ` ( f ` n ) ) | 
						
							| 24 |  | eqid |  |-  ( 2nd ` ( f ` n ) ) = ( 2nd ` ( f ` n ) ) | 
						
							| 25 |  | 2fveq3 |  |-  ( m = n -> ( 1st ` ( f ` m ) ) = ( 1st ` ( f ` n ) ) ) | 
						
							| 26 | 25 | breq1d |  |-  ( m = n -> ( ( 1st ` ( f ` m ) ) <_ A <-> ( 1st ` ( f ` n ) ) <_ A ) ) | 
						
							| 27 | 26 25 | ifbieq2d |  |-  ( m = n -> if ( ( 1st ` ( f ` m ) ) <_ A , A , ( 1st ` ( f ` m ) ) ) = if ( ( 1st ` ( f ` n ) ) <_ A , A , ( 1st ` ( f ` n ) ) ) ) | 
						
							| 28 |  | 2fveq3 |  |-  ( m = n -> ( 2nd ` ( f ` m ) ) = ( 2nd ` ( f ` n ) ) ) | 
						
							| 29 | 27 28 | breq12d |  |-  ( m = n -> ( if ( ( 1st ` ( f ` m ) ) <_ A , A , ( 1st ` ( f ` m ) ) ) <_ ( 2nd ` ( f ` m ) ) <-> if ( ( 1st ` ( f ` n ) ) <_ A , A , ( 1st ` ( f ` n ) ) ) <_ ( 2nd ` ( f ` n ) ) ) ) | 
						
							| 30 | 29 27 28 | ifbieq12d |  |-  ( m = n -> if ( if ( ( 1st ` ( f ` m ) ) <_ A , A , ( 1st ` ( f ` m ) ) ) <_ ( 2nd ` ( f ` m ) ) , if ( ( 1st ` ( f ` m ) ) <_ A , A , ( 1st ` ( f ` m ) ) ) , ( 2nd ` ( f ` m ) ) ) = if ( if ( ( 1st ` ( f ` n ) ) <_ A , A , ( 1st ` ( f ` n ) ) ) <_ ( 2nd ` ( f ` n ) ) , if ( ( 1st ` ( f ` n ) ) <_ A , A , ( 1st ` ( f ` n ) ) ) , ( 2nd ` ( f ` n ) ) ) ) | 
						
							| 31 | 30 28 | opeq12d |  |-  ( m = n -> <. if ( if ( ( 1st ` ( f ` m ) ) <_ A , A , ( 1st ` ( f ` m ) ) ) <_ ( 2nd ` ( f ` m ) ) , if ( ( 1st ` ( f ` m ) ) <_ A , A , ( 1st ` ( f ` m ) ) ) , ( 2nd ` ( f ` m ) ) ) , ( 2nd ` ( f ` m ) ) >. = <. if ( if ( ( 1st ` ( f ` n ) ) <_ A , A , ( 1st ` ( f ` n ) ) ) <_ ( 2nd ` ( f ` n ) ) , if ( ( 1st ` ( f ` n ) ) <_ A , A , ( 1st ` ( f ` n ) ) ) , ( 2nd ` ( f ` n ) ) ) , ( 2nd ` ( f ` n ) ) >. ) | 
						
							| 32 | 31 | cbvmptv |  |-  ( m e. NN |-> <. if ( if ( ( 1st ` ( f ` m ) ) <_ A , A , ( 1st ` ( f ` m ) ) ) <_ ( 2nd ` ( f ` m ) ) , if ( ( 1st ` ( f ` m ) ) <_ A , A , ( 1st ` ( f ` m ) ) ) , ( 2nd ` ( f ` m ) ) ) , ( 2nd ` ( f ` m ) ) >. ) = ( n e. NN |-> <. if ( if ( ( 1st ` ( f ` n ) ) <_ A , A , ( 1st ` ( f ` n ) ) ) <_ ( 2nd ` ( f ` n ) ) , if ( ( 1st ` ( f ` n ) ) <_ A , A , ( 1st ` ( f ` n ) ) ) , ( 2nd ` ( f ` n ) ) ) , ( 2nd ` ( f ` n ) ) >. ) | 
						
							| 33 | 25 30 | opeq12d |  |-  ( m = n -> <. ( 1st ` ( f ` m ) ) , if ( if ( ( 1st ` ( f ` m ) ) <_ A , A , ( 1st ` ( f ` m ) ) ) <_ ( 2nd ` ( f ` m ) ) , if ( ( 1st ` ( f ` m ) ) <_ A , A , ( 1st ` ( f ` m ) ) ) , ( 2nd ` ( f ` m ) ) ) >. = <. ( 1st ` ( f ` n ) ) , if ( if ( ( 1st ` ( f ` n ) ) <_ A , A , ( 1st ` ( f ` n ) ) ) <_ ( 2nd ` ( f ` n ) ) , if ( ( 1st ` ( f ` n ) ) <_ A , A , ( 1st ` ( f ` n ) ) ) , ( 2nd ` ( f ` n ) ) ) >. ) | 
						
							| 34 | 33 | cbvmptv |  |-  ( m e. NN |-> <. ( 1st ` ( f ` m ) ) , if ( if ( ( 1st ` ( f ` m ) ) <_ A , A , ( 1st ` ( f ` m ) ) ) <_ ( 2nd ` ( f ` m ) ) , if ( ( 1st ` ( f ` m ) ) <_ A , A , ( 1st ` ( f ` m ) ) ) , ( 2nd ` ( f ` m ) ) ) >. ) = ( n e. NN |-> <. ( 1st ` ( f ` n ) ) , if ( if ( ( 1st ` ( f ` n ) ) <_ A , A , ( 1st ` ( f ` n ) ) ) <_ ( 2nd ` ( f ` n ) ) , if ( ( 1st ` ( f ` n ) ) <_ A , A , ( 1st ` ( f ` n ) ) ) , ( 2nd ` ( f ` n ) ) ) >. ) | 
						
							| 35 | 11 12 13 14 15 8 16 17 20 21 22 23 24 32 34 | ioombl1lem4 |  |-  ( ( ( ( A e. RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) /\ y e. RR+ ) /\ ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( x C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` x ) + y ) ) ) ) -> ( ( vol* ` ( x i^i ( A (,) +oo ) ) ) + ( vol* ` ( x \ ( A (,) +oo ) ) ) ) <_ ( ( vol* ` x ) + y ) ) | 
						
							| 36 | 10 35 | rexlimddv |  |-  ( ( ( A e. RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) /\ y e. RR+ ) -> ( ( vol* ` ( x i^i ( A (,) +oo ) ) ) + ( vol* ` ( x \ ( A (,) +oo ) ) ) ) <_ ( ( vol* ` x ) + y ) ) | 
						
							| 37 | 36 | ralrimiva |  |-  ( ( A e. RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> A. y e. RR+ ( ( vol* ` ( x i^i ( A (,) +oo ) ) ) + ( vol* ` ( x \ ( A (,) +oo ) ) ) ) <_ ( ( vol* ` x ) + y ) ) | 
						
							| 38 |  | inss1 |  |-  ( x i^i ( A (,) +oo ) ) C_ x | 
						
							| 39 |  | ovolsscl |  |-  ( ( ( x i^i ( A (,) +oo ) ) C_ x /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i ( A (,) +oo ) ) ) e. RR ) | 
						
							| 40 | 38 39 | mp3an1 |  |-  ( ( x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i ( A (,) +oo ) ) ) e. RR ) | 
						
							| 41 | 40 | adantl |  |-  ( ( A e. RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( vol* ` ( x i^i ( A (,) +oo ) ) ) e. RR ) | 
						
							| 42 |  | difss |  |-  ( x \ ( A (,) +oo ) ) C_ x | 
						
							| 43 |  | ovolsscl |  |-  ( ( ( x \ ( A (,) +oo ) ) C_ x /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x \ ( A (,) +oo ) ) ) e. RR ) | 
						
							| 44 | 42 43 | mp3an1 |  |-  ( ( x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x \ ( A (,) +oo ) ) ) e. RR ) | 
						
							| 45 | 44 | adantl |  |-  ( ( A e. RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( vol* ` ( x \ ( A (,) +oo ) ) ) e. RR ) | 
						
							| 46 | 41 45 | readdcld |  |-  ( ( A e. RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( ( vol* ` ( x i^i ( A (,) +oo ) ) ) + ( vol* ` ( x \ ( A (,) +oo ) ) ) ) e. RR ) | 
						
							| 47 |  | simprr |  |-  ( ( A e. RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( vol* ` x ) e. RR ) | 
						
							| 48 |  | alrple |  |-  ( ( ( ( vol* ` ( x i^i ( A (,) +oo ) ) ) + ( vol* ` ( x \ ( A (,) +oo ) ) ) ) e. RR /\ ( vol* ` x ) e. RR ) -> ( ( ( vol* ` ( x i^i ( A (,) +oo ) ) ) + ( vol* ` ( x \ ( A (,) +oo ) ) ) ) <_ ( vol* ` x ) <-> A. y e. RR+ ( ( vol* ` ( x i^i ( A (,) +oo ) ) ) + ( vol* ` ( x \ ( A (,) +oo ) ) ) ) <_ ( ( vol* ` x ) + y ) ) ) | 
						
							| 49 | 46 47 48 | syl2anc |  |-  ( ( A e. RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( ( ( vol* ` ( x i^i ( A (,) +oo ) ) ) + ( vol* ` ( x \ ( A (,) +oo ) ) ) ) <_ ( vol* ` x ) <-> A. y e. RR+ ( ( vol* ` ( x i^i ( A (,) +oo ) ) ) + ( vol* ` ( x \ ( A (,) +oo ) ) ) ) <_ ( ( vol* ` x ) + y ) ) ) | 
						
							| 50 | 37 49 | mpbird |  |-  ( ( A e. RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( ( vol* ` ( x i^i ( A (,) +oo ) ) ) + ( vol* ` ( x \ ( A (,) +oo ) ) ) ) <_ ( vol* ` x ) ) | 
						
							| 51 | 50 | expr |  |-  ( ( A e. RR /\ x C_ RR ) -> ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i ( A (,) +oo ) ) ) + ( vol* ` ( x \ ( A (,) +oo ) ) ) ) <_ ( vol* ` x ) ) ) | 
						
							| 52 | 4 51 | sylan2 |  |-  ( ( A e. RR /\ x e. ~P RR ) -> ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i ( A (,) +oo ) ) ) + ( vol* ` ( x \ ( A (,) +oo ) ) ) ) <_ ( vol* ` x ) ) ) | 
						
							| 53 | 52 | ralrimiva |  |-  ( A e. RR -> A. x e. ~P RR ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i ( A (,) +oo ) ) ) + ( vol* ` ( x \ ( A (,) +oo ) ) ) ) <_ ( vol* ` x ) ) ) | 
						
							| 54 |  | ismbl2 |  |-  ( ( A (,) +oo ) e. dom vol <-> ( ( A (,) +oo ) C_ RR /\ A. x e. ~P RR ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i ( A (,) +oo ) ) ) + ( vol* ` ( x \ ( A (,) +oo ) ) ) ) <_ ( vol* ` x ) ) ) ) | 
						
							| 55 | 3 53 54 | sylanbrc |  |-  ( A e. RR -> ( A (,) +oo ) e. dom vol ) | 
						
							| 56 |  | oveq1 |  |-  ( A = +oo -> ( A (,) +oo ) = ( +oo (,) +oo ) ) | 
						
							| 57 |  | iooid |  |-  ( +oo (,) +oo ) = (/) | 
						
							| 58 | 56 57 | eqtrdi |  |-  ( A = +oo -> ( A (,) +oo ) = (/) ) | 
						
							| 59 |  | 0mbl |  |-  (/) e. dom vol | 
						
							| 60 | 58 59 | eqeltrdi |  |-  ( A = +oo -> ( A (,) +oo ) e. dom vol ) | 
						
							| 61 |  | oveq1 |  |-  ( A = -oo -> ( A (,) +oo ) = ( -oo (,) +oo ) ) | 
						
							| 62 |  | ioomax |  |-  ( -oo (,) +oo ) = RR | 
						
							| 63 | 61 62 | eqtrdi |  |-  ( A = -oo -> ( A (,) +oo ) = RR ) | 
						
							| 64 |  | rembl |  |-  RR e. dom vol | 
						
							| 65 | 63 64 | eqeltrdi |  |-  ( A = -oo -> ( A (,) +oo ) e. dom vol ) | 
						
							| 66 | 55 60 65 | 3jaoi |  |-  ( ( A e. RR \/ A = +oo \/ A = -oo ) -> ( A (,) +oo ) e. dom vol ) | 
						
							| 67 | 1 66 | sylbi |  |-  ( A e. RR* -> ( A (,) +oo ) e. dom vol ) |