| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ioombl1.b |  |-  B = ( A (,) +oo ) | 
						
							| 2 |  | ioombl1.a |  |-  ( ph -> A e. RR ) | 
						
							| 3 |  | ioombl1.e |  |-  ( ph -> E C_ RR ) | 
						
							| 4 |  | ioombl1.v |  |-  ( ph -> ( vol* ` E ) e. RR ) | 
						
							| 5 |  | ioombl1.c |  |-  ( ph -> C e. RR+ ) | 
						
							| 6 |  | ioombl1.s |  |-  S = seq 1 ( + , ( ( abs o. - ) o. F ) ) | 
						
							| 7 |  | ioombl1.t |  |-  T = seq 1 ( + , ( ( abs o. - ) o. G ) ) | 
						
							| 8 |  | ioombl1.u |  |-  U = seq 1 ( + , ( ( abs o. - ) o. H ) ) | 
						
							| 9 |  | ioombl1.f1 |  |-  ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 10 |  | ioombl1.f2 |  |-  ( ph -> E C_ U. ran ( (,) o. F ) ) | 
						
							| 11 |  | ioombl1.f3 |  |-  ( ph -> sup ( ran S , RR* , < ) <_ ( ( vol* ` E ) + C ) ) | 
						
							| 12 |  | ioombl1.p |  |-  P = ( 1st ` ( F ` n ) ) | 
						
							| 13 |  | ioombl1.q |  |-  Q = ( 2nd ` ( F ` n ) ) | 
						
							| 14 |  | ioombl1.g |  |-  G = ( n e. NN |-> <. if ( if ( P <_ A , A , P ) <_ Q , if ( P <_ A , A , P ) , Q ) , Q >. ) | 
						
							| 15 |  | ioombl1.h |  |-  H = ( n e. NN |-> <. P , if ( if ( P <_ A , A , P ) <_ Q , if ( P <_ A , A , P ) , Q ) >. ) | 
						
							| 16 |  | eqid |  |-  ( ( abs o. - ) o. F ) = ( ( abs o. - ) o. F ) | 
						
							| 17 | 16 6 | ovolsf |  |-  ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> S : NN --> ( 0 [,) +oo ) ) | 
						
							| 18 | 9 17 | syl |  |-  ( ph -> S : NN --> ( 0 [,) +oo ) ) | 
						
							| 19 | 18 | frnd |  |-  ( ph -> ran S C_ ( 0 [,) +oo ) ) | 
						
							| 20 |  | icossxr |  |-  ( 0 [,) +oo ) C_ RR* | 
						
							| 21 | 19 20 | sstrdi |  |-  ( ph -> ran S C_ RR* ) | 
						
							| 22 |  | supxrcl |  |-  ( ran S C_ RR* -> sup ( ran S , RR* , < ) e. RR* ) | 
						
							| 23 | 21 22 | syl |  |-  ( ph -> sup ( ran S , RR* , < ) e. RR* ) | 
						
							| 24 | 5 | rpred |  |-  ( ph -> C e. RR ) | 
						
							| 25 | 4 24 | readdcld |  |-  ( ph -> ( ( vol* ` E ) + C ) e. RR ) | 
						
							| 26 |  | mnfxr |  |-  -oo e. RR* | 
						
							| 27 | 26 | a1i |  |-  ( ph -> -oo e. RR* ) | 
						
							| 28 | 18 | ffnd |  |-  ( ph -> S Fn NN ) | 
						
							| 29 |  | 1nn |  |-  1 e. NN | 
						
							| 30 |  | fnfvelrn |  |-  ( ( S Fn NN /\ 1 e. NN ) -> ( S ` 1 ) e. ran S ) | 
						
							| 31 | 28 29 30 | sylancl |  |-  ( ph -> ( S ` 1 ) e. ran S ) | 
						
							| 32 | 21 31 | sseldd |  |-  ( ph -> ( S ` 1 ) e. RR* ) | 
						
							| 33 |  | rge0ssre |  |-  ( 0 [,) +oo ) C_ RR | 
						
							| 34 |  | ffvelcdm |  |-  ( ( S : NN --> ( 0 [,) +oo ) /\ 1 e. NN ) -> ( S ` 1 ) e. ( 0 [,) +oo ) ) | 
						
							| 35 | 18 29 34 | sylancl |  |-  ( ph -> ( S ` 1 ) e. ( 0 [,) +oo ) ) | 
						
							| 36 | 33 35 | sselid |  |-  ( ph -> ( S ` 1 ) e. RR ) | 
						
							| 37 | 36 | mnfltd |  |-  ( ph -> -oo < ( S ` 1 ) ) | 
						
							| 38 |  | supxrub |  |-  ( ( ran S C_ RR* /\ ( S ` 1 ) e. ran S ) -> ( S ` 1 ) <_ sup ( ran S , RR* , < ) ) | 
						
							| 39 | 21 31 38 | syl2anc |  |-  ( ph -> ( S ` 1 ) <_ sup ( ran S , RR* , < ) ) | 
						
							| 40 | 27 32 23 37 39 | xrltletrd |  |-  ( ph -> -oo < sup ( ran S , RR* , < ) ) | 
						
							| 41 |  | xrre |  |-  ( ( ( sup ( ran S , RR* , < ) e. RR* /\ ( ( vol* ` E ) + C ) e. RR ) /\ ( -oo < sup ( ran S , RR* , < ) /\ sup ( ran S , RR* , < ) <_ ( ( vol* ` E ) + C ) ) ) -> sup ( ran S , RR* , < ) e. RR ) | 
						
							| 42 | 23 25 40 11 41 | syl22anc |  |-  ( ph -> sup ( ran S , RR* , < ) e. RR ) |