| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rexr |  |-  ( A e. RR -> A e. RR* ) | 
						
							| 2 | 1 | 3ad2ant1 |  |-  ( ( A e. RR /\ B e. RR /\ A < B ) -> A e. RR* ) | 
						
							| 3 |  | rexr |  |-  ( B e. RR -> B e. RR* ) | 
						
							| 4 | 3 | 3ad2ant2 |  |-  ( ( A e. RR /\ B e. RR /\ A < B ) -> B e. RR* ) | 
						
							| 5 |  | readdcl |  |-  ( ( A e. RR /\ B e. RR ) -> ( A + B ) e. RR ) | 
						
							| 6 | 5 | rehalfcld |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( A + B ) / 2 ) e. RR ) | 
						
							| 7 | 6 | 3adant3 |  |-  ( ( A e. RR /\ B e. RR /\ A < B ) -> ( ( A + B ) / 2 ) e. RR ) | 
						
							| 8 |  | avglt1 |  |-  ( ( A e. RR /\ B e. RR ) -> ( A < B <-> A < ( ( A + B ) / 2 ) ) ) | 
						
							| 9 | 8 | biimp3a |  |-  ( ( A e. RR /\ B e. RR /\ A < B ) -> A < ( ( A + B ) / 2 ) ) | 
						
							| 10 |  | avglt2 |  |-  ( ( A e. RR /\ B e. RR ) -> ( A < B <-> ( ( A + B ) / 2 ) < B ) ) | 
						
							| 11 | 10 | biimp3a |  |-  ( ( A e. RR /\ B e. RR /\ A < B ) -> ( ( A + B ) / 2 ) < B ) | 
						
							| 12 | 2 4 7 9 11 | eliood |  |-  ( ( A e. RR /\ B e. RR /\ A < B ) -> ( ( A + B ) / 2 ) e. ( A (,) B ) ) |