Metamath Proof Explorer


Theorem ioon0

Description: An open interval of extended reals is nonempty iff the lower argument is less than the upper argument. (Contributed by NM, 2-Mar-2007)

Ref Expression
Assertion ioon0
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( A (,) B ) =/= (/) <-> A < B ) )

Proof

Step Hyp Ref Expression
1 ioo0
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( ( A (,) B ) = (/) <-> B <_ A ) )
2 xrlenlt
 |-  ( ( B e. RR* /\ A e. RR* ) -> ( B <_ A <-> -. A < B ) )
3 2 ancoms
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( B <_ A <-> -. A < B ) )
4 1 3 bitr2d
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( -. A < B <-> ( A (,) B ) = (/) ) )
5 4 necon1abid
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( ( A (,) B ) =/= (/) <-> A < B ) )