Description: An open interval of extended reals is nonempty iff the lower argument is less than the upper argument. (Contributed by NM, 2-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ioon0 | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( A (,) B ) =/= (/) <-> A < B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioo0 | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( A (,) B ) = (/) <-> B <_ A ) ) |
|
| 2 | xrlenlt | |- ( ( B e. RR* /\ A e. RR* ) -> ( B <_ A <-> -. A < B ) ) |
|
| 3 | 2 | ancoms | |- ( ( A e. RR* /\ B e. RR* ) -> ( B <_ A <-> -. A < B ) ) |
| 4 | 1 3 | bitr2d | |- ( ( A e. RR* /\ B e. RR* ) -> ( -. A < B <-> ( A (,) B ) = (/) ) ) |
| 5 | 4 | necon1abid | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( A (,) B ) =/= (/) <-> A < B ) ) |