| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ioonct.b |
|- ( ph -> A e. RR* ) |
| 2 |
|
ioonct.c |
|- ( ph -> B e. RR* ) |
| 3 |
|
ioonct.l |
|- ( ph -> A < B ) |
| 4 |
|
ioonct.a |
|- C = ( A (,) B ) |
| 5 |
|
ioontr |
|- ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) = ( A (,) B ) |
| 6 |
5
|
a1i |
|- ( ( ph /\ C ~<_ _om ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) = ( A (,) B ) ) |
| 7 |
|
ioossre |
|- ( A (,) B ) C_ RR |
| 8 |
7
|
a1i |
|- ( ( ph /\ C ~<_ _om ) -> ( A (,) B ) C_ RR ) |
| 9 |
4
|
breq1i |
|- ( C ~<_ _om <-> ( A (,) B ) ~<_ _om ) |
| 10 |
9
|
biimpi |
|- ( C ~<_ _om -> ( A (,) B ) ~<_ _om ) |
| 11 |
|
nnenom |
|- NN ~~ _om |
| 12 |
11
|
ensymi |
|- _om ~~ NN |
| 13 |
12
|
a1i |
|- ( C ~<_ _om -> _om ~~ NN ) |
| 14 |
|
domentr |
|- ( ( ( A (,) B ) ~<_ _om /\ _om ~~ NN ) -> ( A (,) B ) ~<_ NN ) |
| 15 |
10 13 14
|
syl2anc |
|- ( C ~<_ _om -> ( A (,) B ) ~<_ NN ) |
| 16 |
15
|
adantl |
|- ( ( ph /\ C ~<_ _om ) -> ( A (,) B ) ~<_ NN ) |
| 17 |
|
rectbntr0 |
|- ( ( ( A (,) B ) C_ RR /\ ( A (,) B ) ~<_ NN ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) = (/) ) |
| 18 |
8 16 17
|
syl2anc |
|- ( ( ph /\ C ~<_ _om ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) = (/) ) |
| 19 |
6 18
|
eqtr3d |
|- ( ( ph /\ C ~<_ _om ) -> ( A (,) B ) = (/) ) |
| 20 |
|
ioon0 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( A (,) B ) =/= (/) <-> A < B ) ) |
| 21 |
1 2 20
|
syl2anc |
|- ( ph -> ( ( A (,) B ) =/= (/) <-> A < B ) ) |
| 22 |
3 21
|
mpbird |
|- ( ph -> ( A (,) B ) =/= (/) ) |
| 23 |
22
|
neneqd |
|- ( ph -> -. ( A (,) B ) = (/) ) |
| 24 |
23
|
adantr |
|- ( ( ph /\ C ~<_ _om ) -> -. ( A (,) B ) = (/) ) |
| 25 |
19 24
|
pm2.65da |
|- ( ph -> -. C ~<_ _om ) |