| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ltneg |  |-  ( ( A e. RR /\ C e. RR ) -> ( A < C <-> -u C < -u A ) ) | 
						
							| 2 | 1 | 3adant2 |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A < C <-> -u C < -u A ) ) | 
						
							| 3 |  | ltneg |  |-  ( ( C e. RR /\ B e. RR ) -> ( C < B <-> -u B < -u C ) ) | 
						
							| 4 | 3 | ancoms |  |-  ( ( B e. RR /\ C e. RR ) -> ( C < B <-> -u B < -u C ) ) | 
						
							| 5 | 4 | 3adant1 |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C < B <-> -u B < -u C ) ) | 
						
							| 6 | 2 5 | anbi12d |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A < C /\ C < B ) <-> ( -u C < -u A /\ -u B < -u C ) ) ) | 
						
							| 7 | 6 | biancomd |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A < C /\ C < B ) <-> ( -u B < -u C /\ -u C < -u A ) ) ) | 
						
							| 8 |  | rexr |  |-  ( A e. RR -> A e. RR* ) | 
						
							| 9 |  | rexr |  |-  ( B e. RR -> B e. RR* ) | 
						
							| 10 |  | rexr |  |-  ( C e. RR -> C e. RR* ) | 
						
							| 11 |  | elioo5 |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( C e. ( A (,) B ) <-> ( A < C /\ C < B ) ) ) | 
						
							| 12 | 8 9 10 11 | syl3an |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C e. ( A (,) B ) <-> ( A < C /\ C < B ) ) ) | 
						
							| 13 |  | renegcl |  |-  ( B e. RR -> -u B e. RR ) | 
						
							| 14 |  | renegcl |  |-  ( A e. RR -> -u A e. RR ) | 
						
							| 15 |  | renegcl |  |-  ( C e. RR -> -u C e. RR ) | 
						
							| 16 |  | rexr |  |-  ( -u B e. RR -> -u B e. RR* ) | 
						
							| 17 |  | rexr |  |-  ( -u A e. RR -> -u A e. RR* ) | 
						
							| 18 |  | rexr |  |-  ( -u C e. RR -> -u C e. RR* ) | 
						
							| 19 |  | elioo5 |  |-  ( ( -u B e. RR* /\ -u A e. RR* /\ -u C e. RR* ) -> ( -u C e. ( -u B (,) -u A ) <-> ( -u B < -u C /\ -u C < -u A ) ) ) | 
						
							| 20 | 16 17 18 19 | syl3an |  |-  ( ( -u B e. RR /\ -u A e. RR /\ -u C e. RR ) -> ( -u C e. ( -u B (,) -u A ) <-> ( -u B < -u C /\ -u C < -u A ) ) ) | 
						
							| 21 | 13 14 15 20 | syl3an |  |-  ( ( B e. RR /\ A e. RR /\ C e. RR ) -> ( -u C e. ( -u B (,) -u A ) <-> ( -u B < -u C /\ -u C < -u A ) ) ) | 
						
							| 22 | 21 | 3com12 |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( -u C e. ( -u B (,) -u A ) <-> ( -u B < -u C /\ -u C < -u A ) ) ) | 
						
							| 23 | 7 12 22 | 3bitr4d |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C e. ( A (,) B ) <-> -u C e. ( -u B (,) -u A ) ) ) |