Step |
Hyp |
Ref |
Expression |
1 |
|
ltneg |
|- ( ( A e. RR /\ C e. RR ) -> ( A < C <-> -u C < -u A ) ) |
2 |
1
|
3adant2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A < C <-> -u C < -u A ) ) |
3 |
|
ltneg |
|- ( ( C e. RR /\ B e. RR ) -> ( C < B <-> -u B < -u C ) ) |
4 |
3
|
ancoms |
|- ( ( B e. RR /\ C e. RR ) -> ( C < B <-> -u B < -u C ) ) |
5 |
4
|
3adant1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C < B <-> -u B < -u C ) ) |
6 |
2 5
|
anbi12d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A < C /\ C < B ) <-> ( -u C < -u A /\ -u B < -u C ) ) ) |
7 |
6
|
biancomd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A < C /\ C < B ) <-> ( -u B < -u C /\ -u C < -u A ) ) ) |
8 |
|
rexr |
|- ( A e. RR -> A e. RR* ) |
9 |
|
rexr |
|- ( B e. RR -> B e. RR* ) |
10 |
|
rexr |
|- ( C e. RR -> C e. RR* ) |
11 |
|
elioo5 |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( C e. ( A (,) B ) <-> ( A < C /\ C < B ) ) ) |
12 |
8 9 10 11
|
syl3an |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C e. ( A (,) B ) <-> ( A < C /\ C < B ) ) ) |
13 |
|
renegcl |
|- ( B e. RR -> -u B e. RR ) |
14 |
|
renegcl |
|- ( A e. RR -> -u A e. RR ) |
15 |
|
renegcl |
|- ( C e. RR -> -u C e. RR ) |
16 |
|
rexr |
|- ( -u B e. RR -> -u B e. RR* ) |
17 |
|
rexr |
|- ( -u A e. RR -> -u A e. RR* ) |
18 |
|
rexr |
|- ( -u C e. RR -> -u C e. RR* ) |
19 |
|
elioo5 |
|- ( ( -u B e. RR* /\ -u A e. RR* /\ -u C e. RR* ) -> ( -u C e. ( -u B (,) -u A ) <-> ( -u B < -u C /\ -u C < -u A ) ) ) |
20 |
16 17 18 19
|
syl3an |
|- ( ( -u B e. RR /\ -u A e. RR /\ -u C e. RR ) -> ( -u C e. ( -u B (,) -u A ) <-> ( -u B < -u C /\ -u C < -u A ) ) ) |
21 |
13 14 15 20
|
syl3an |
|- ( ( B e. RR /\ A e. RR /\ C e. RR ) -> ( -u C e. ( -u B (,) -u A ) <-> ( -u B < -u C /\ -u C < -u A ) ) ) |
22 |
21
|
3com12 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( -u C e. ( -u B (,) -u A ) <-> ( -u B < -u C /\ -u C < -u A ) ) ) |
23 |
7 12 22
|
3bitr4d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C e. ( A (,) B ) <-> -u C e. ( -u B (,) -u A ) ) ) |