Description: The set of positive reals expressed as an open interval. (Contributed by NM, 7-May-2007)
Ref | Expression | ||
---|---|---|---|
Assertion | ioopos | |- ( 0 (,) +oo ) = { x e. RR | 0 < x } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr | |- 0 e. RR* |
|
2 | pnfxr | |- +oo e. RR* |
|
3 | iooval2 | |- ( ( 0 e. RR* /\ +oo e. RR* ) -> ( 0 (,) +oo ) = { x e. RR | ( 0 < x /\ x < +oo ) } ) |
|
4 | 1 2 3 | mp2an | |- ( 0 (,) +oo ) = { x e. RR | ( 0 < x /\ x < +oo ) } |
5 | ltpnf | |- ( x e. RR -> x < +oo ) |
|
6 | 5 | biantrud | |- ( x e. RR -> ( 0 < x <-> ( 0 < x /\ x < +oo ) ) ) |
7 | 6 | rabbiia | |- { x e. RR | 0 < x } = { x e. RR | ( 0 < x /\ x < +oo ) } |
8 | 4 7 | eqtr4i | |- ( 0 (,) +oo ) = { x e. RR | 0 < x } |