Metamath Proof Explorer


Theorem ioopos

Description: The set of positive reals expressed as an open interval. (Contributed by NM, 7-May-2007)

Ref Expression
Assertion ioopos
|- ( 0 (,) +oo ) = { x e. RR | 0 < x }

Proof

Step Hyp Ref Expression
1 0xr
 |-  0 e. RR*
2 pnfxr
 |-  +oo e. RR*
3 iooval2
 |-  ( ( 0 e. RR* /\ +oo e. RR* ) -> ( 0 (,) +oo ) = { x e. RR | ( 0 < x /\ x < +oo ) } )
4 1 2 3 mp2an
 |-  ( 0 (,) +oo ) = { x e. RR | ( 0 < x /\ x < +oo ) }
5 ltpnf
 |-  ( x e. RR -> x < +oo )
6 5 biantrud
 |-  ( x e. RR -> ( 0 < x <-> ( 0 < x /\ x < +oo ) ) )
7 6 rabbiia
 |-  { x e. RR | 0 < x } = { x e. RR | ( 0 < x /\ x < +oo ) }
8 4 7 eqtr4i
 |-  ( 0 (,) +oo ) = { x e. RR | 0 < x }