Step |
Hyp |
Ref |
Expression |
1 |
|
ioorf.1 |
|- F = ( x e. ran (,) |-> if ( x = (/) , <. 0 , 0 >. , <. inf ( x , RR* , < ) , sup ( x , RR* , < ) >. ) ) |
2 |
1
|
ioorf |
|- F : ran (,) --> ( <_ i^i ( RR* X. RR* ) ) |
3 |
2
|
ffvelrni |
|- ( A e. ran (,) -> ( F ` A ) e. ( <_ i^i ( RR* X. RR* ) ) ) |
4 |
3
|
adantr |
|- ( ( A e. ran (,) /\ ( vol* ` A ) e. RR ) -> ( F ` A ) e. ( <_ i^i ( RR* X. RR* ) ) ) |
5 |
4
|
elin1d |
|- ( ( A e. ran (,) /\ ( vol* ` A ) e. RR ) -> ( F ` A ) e. <_ ) |
6 |
1
|
ioorval |
|- ( A e. ran (,) -> ( F ` A ) = if ( A = (/) , <. 0 , 0 >. , <. inf ( A , RR* , < ) , sup ( A , RR* , < ) >. ) ) |
7 |
6
|
adantr |
|- ( ( A e. ran (,) /\ ( vol* ` A ) e. RR ) -> ( F ` A ) = if ( A = (/) , <. 0 , 0 >. , <. inf ( A , RR* , < ) , sup ( A , RR* , < ) >. ) ) |
8 |
|
iftrue |
|- ( A = (/) -> if ( A = (/) , <. 0 , 0 >. , <. inf ( A , RR* , < ) , sup ( A , RR* , < ) >. ) = <. 0 , 0 >. ) |
9 |
7 8
|
sylan9eq |
|- ( ( ( A e. ran (,) /\ ( vol* ` A ) e. RR ) /\ A = (/) ) -> ( F ` A ) = <. 0 , 0 >. ) |
10 |
|
0re |
|- 0 e. RR |
11 |
|
opelxpi |
|- ( ( 0 e. RR /\ 0 e. RR ) -> <. 0 , 0 >. e. ( RR X. RR ) ) |
12 |
10 10 11
|
mp2an |
|- <. 0 , 0 >. e. ( RR X. RR ) |
13 |
9 12
|
eqeltrdi |
|- ( ( ( A e. ran (,) /\ ( vol* ` A ) e. RR ) /\ A = (/) ) -> ( F ` A ) e. ( RR X. RR ) ) |
14 |
|
ioof |
|- (,) : ( RR* X. RR* ) --> ~P RR |
15 |
|
ffn |
|- ( (,) : ( RR* X. RR* ) --> ~P RR -> (,) Fn ( RR* X. RR* ) ) |
16 |
|
ovelrn |
|- ( (,) Fn ( RR* X. RR* ) -> ( A e. ran (,) <-> E. a e. RR* E. b e. RR* A = ( a (,) b ) ) ) |
17 |
14 15 16
|
mp2b |
|- ( A e. ran (,) <-> E. a e. RR* E. b e. RR* A = ( a (,) b ) ) |
18 |
1
|
ioorinv2 |
|- ( ( a (,) b ) =/= (/) -> ( F ` ( a (,) b ) ) = <. a , b >. ) |
19 |
18
|
adantl |
|- ( ( ( vol* ` ( a (,) b ) ) e. RR /\ ( a (,) b ) =/= (/) ) -> ( F ` ( a (,) b ) ) = <. a , b >. ) |
20 |
|
ioorcl2 |
|- ( ( ( a (,) b ) =/= (/) /\ ( vol* ` ( a (,) b ) ) e. RR ) -> ( a e. RR /\ b e. RR ) ) |
21 |
20
|
ancoms |
|- ( ( ( vol* ` ( a (,) b ) ) e. RR /\ ( a (,) b ) =/= (/) ) -> ( a e. RR /\ b e. RR ) ) |
22 |
|
opelxpi |
|- ( ( a e. RR /\ b e. RR ) -> <. a , b >. e. ( RR X. RR ) ) |
23 |
21 22
|
syl |
|- ( ( ( vol* ` ( a (,) b ) ) e. RR /\ ( a (,) b ) =/= (/) ) -> <. a , b >. e. ( RR X. RR ) ) |
24 |
19 23
|
eqeltrd |
|- ( ( ( vol* ` ( a (,) b ) ) e. RR /\ ( a (,) b ) =/= (/) ) -> ( F ` ( a (,) b ) ) e. ( RR X. RR ) ) |
25 |
|
fveq2 |
|- ( A = ( a (,) b ) -> ( vol* ` A ) = ( vol* ` ( a (,) b ) ) ) |
26 |
25
|
eleq1d |
|- ( A = ( a (,) b ) -> ( ( vol* ` A ) e. RR <-> ( vol* ` ( a (,) b ) ) e. RR ) ) |
27 |
|
neeq1 |
|- ( A = ( a (,) b ) -> ( A =/= (/) <-> ( a (,) b ) =/= (/) ) ) |
28 |
26 27
|
anbi12d |
|- ( A = ( a (,) b ) -> ( ( ( vol* ` A ) e. RR /\ A =/= (/) ) <-> ( ( vol* ` ( a (,) b ) ) e. RR /\ ( a (,) b ) =/= (/) ) ) ) |
29 |
|
fveq2 |
|- ( A = ( a (,) b ) -> ( F ` A ) = ( F ` ( a (,) b ) ) ) |
30 |
29
|
eleq1d |
|- ( A = ( a (,) b ) -> ( ( F ` A ) e. ( RR X. RR ) <-> ( F ` ( a (,) b ) ) e. ( RR X. RR ) ) ) |
31 |
28 30
|
imbi12d |
|- ( A = ( a (,) b ) -> ( ( ( ( vol* ` A ) e. RR /\ A =/= (/) ) -> ( F ` A ) e. ( RR X. RR ) ) <-> ( ( ( vol* ` ( a (,) b ) ) e. RR /\ ( a (,) b ) =/= (/) ) -> ( F ` ( a (,) b ) ) e. ( RR X. RR ) ) ) ) |
32 |
24 31
|
mpbiri |
|- ( A = ( a (,) b ) -> ( ( ( vol* ` A ) e. RR /\ A =/= (/) ) -> ( F ` A ) e. ( RR X. RR ) ) ) |
33 |
32
|
a1i |
|- ( ( a e. RR* /\ b e. RR* ) -> ( A = ( a (,) b ) -> ( ( ( vol* ` A ) e. RR /\ A =/= (/) ) -> ( F ` A ) e. ( RR X. RR ) ) ) ) |
34 |
33
|
rexlimivv |
|- ( E. a e. RR* E. b e. RR* A = ( a (,) b ) -> ( ( ( vol* ` A ) e. RR /\ A =/= (/) ) -> ( F ` A ) e. ( RR X. RR ) ) ) |
35 |
17 34
|
sylbi |
|- ( A e. ran (,) -> ( ( ( vol* ` A ) e. RR /\ A =/= (/) ) -> ( F ` A ) e. ( RR X. RR ) ) ) |
36 |
35
|
impl |
|- ( ( ( A e. ran (,) /\ ( vol* ` A ) e. RR ) /\ A =/= (/) ) -> ( F ` A ) e. ( RR X. RR ) ) |
37 |
13 36
|
pm2.61dane |
|- ( ( A e. ran (,) /\ ( vol* ` A ) e. RR ) -> ( F ` A ) e. ( RR X. RR ) ) |
38 |
5 37
|
elind |
|- ( ( A e. ran (,) /\ ( vol* ` A ) e. RR ) -> ( F ` A ) e. ( <_ i^i ( RR X. RR ) ) ) |