Step |
Hyp |
Ref |
Expression |
1 |
|
id |
|- ( ( A (,) B ) = (/) -> ( A (,) B ) = (/) ) |
2 |
|
iooid |
|- ( 0 (,) 0 ) = (/) |
3 |
|
ioof |
|- (,) : ( RR* X. RR* ) --> ~P RR |
4 |
|
ffn |
|- ( (,) : ( RR* X. RR* ) --> ~P RR -> (,) Fn ( RR* X. RR* ) ) |
5 |
3 4
|
ax-mp |
|- (,) Fn ( RR* X. RR* ) |
6 |
|
0xr |
|- 0 e. RR* |
7 |
|
fnovrn |
|- ( ( (,) Fn ( RR* X. RR* ) /\ 0 e. RR* /\ 0 e. RR* ) -> ( 0 (,) 0 ) e. ran (,) ) |
8 |
5 6 6 7
|
mp3an |
|- ( 0 (,) 0 ) e. ran (,) |
9 |
2 8
|
eqeltrri |
|- (/) e. ran (,) |
10 |
1 9
|
eqeltrdi |
|- ( ( A (,) B ) = (/) -> ( A (,) B ) e. ran (,) ) |
11 |
|
n0 |
|- ( ( A (,) B ) =/= (/) <-> E. x x e. ( A (,) B ) ) |
12 |
|
eliooxr |
|- ( x e. ( A (,) B ) -> ( A e. RR* /\ B e. RR* ) ) |
13 |
|
fnovrn |
|- ( ( (,) Fn ( RR* X. RR* ) /\ A e. RR* /\ B e. RR* ) -> ( A (,) B ) e. ran (,) ) |
14 |
5 13
|
mp3an1 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A (,) B ) e. ran (,) ) |
15 |
12 14
|
syl |
|- ( x e. ( A (,) B ) -> ( A (,) B ) e. ran (,) ) |
16 |
15
|
exlimiv |
|- ( E. x x e. ( A (,) B ) -> ( A (,) B ) e. ran (,) ) |
17 |
11 16
|
sylbi |
|- ( ( A (,) B ) =/= (/) -> ( A (,) B ) e. ran (,) ) |
18 |
10 17
|
pm2.61ine |
|- ( A (,) B ) e. ran (,) |