| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
|- ( ( A (,) B ) = (/) -> ( A (,) B ) = (/) ) |
| 2 |
|
iooid |
|- ( 0 (,) 0 ) = (/) |
| 3 |
|
ioof |
|- (,) : ( RR* X. RR* ) --> ~P RR |
| 4 |
|
ffn |
|- ( (,) : ( RR* X. RR* ) --> ~P RR -> (,) Fn ( RR* X. RR* ) ) |
| 5 |
3 4
|
ax-mp |
|- (,) Fn ( RR* X. RR* ) |
| 6 |
|
0xr |
|- 0 e. RR* |
| 7 |
|
fnovrn |
|- ( ( (,) Fn ( RR* X. RR* ) /\ 0 e. RR* /\ 0 e. RR* ) -> ( 0 (,) 0 ) e. ran (,) ) |
| 8 |
5 6 6 7
|
mp3an |
|- ( 0 (,) 0 ) e. ran (,) |
| 9 |
2 8
|
eqeltrri |
|- (/) e. ran (,) |
| 10 |
1 9
|
eqeltrdi |
|- ( ( A (,) B ) = (/) -> ( A (,) B ) e. ran (,) ) |
| 11 |
|
n0 |
|- ( ( A (,) B ) =/= (/) <-> E. x x e. ( A (,) B ) ) |
| 12 |
|
eliooxr |
|- ( x e. ( A (,) B ) -> ( A e. RR* /\ B e. RR* ) ) |
| 13 |
|
fnovrn |
|- ( ( (,) Fn ( RR* X. RR* ) /\ A e. RR* /\ B e. RR* ) -> ( A (,) B ) e. ran (,) ) |
| 14 |
5 13
|
mp3an1 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A (,) B ) e. ran (,) ) |
| 15 |
12 14
|
syl |
|- ( x e. ( A (,) B ) -> ( A (,) B ) e. ran (,) ) |
| 16 |
15
|
exlimiv |
|- ( E. x x e. ( A (,) B ) -> ( A (,) B ) e. ran (,) ) |
| 17 |
11 16
|
sylbi |
|- ( ( A (,) B ) =/= (/) -> ( A (,) B ) e. ran (,) ) |
| 18 |
10 17
|
pm2.61ine |
|- ( A (,) B ) e. ran (,) |