Step |
Hyp |
Ref |
Expression |
1 |
|
ioorf.1 |
|- F = ( x e. ran (,) |-> if ( x = (/) , <. 0 , 0 >. , <. inf ( x , RR* , < ) , sup ( x , RR* , < ) >. ) ) |
2 |
|
eqeq1 |
|- ( x = A -> ( x = (/) <-> A = (/) ) ) |
3 |
|
infeq1 |
|- ( x = A -> inf ( x , RR* , < ) = inf ( A , RR* , < ) ) |
4 |
|
supeq1 |
|- ( x = A -> sup ( x , RR* , < ) = sup ( A , RR* , < ) ) |
5 |
3 4
|
opeq12d |
|- ( x = A -> <. inf ( x , RR* , < ) , sup ( x , RR* , < ) >. = <. inf ( A , RR* , < ) , sup ( A , RR* , < ) >. ) |
6 |
2 5
|
ifbieq2d |
|- ( x = A -> if ( x = (/) , <. 0 , 0 >. , <. inf ( x , RR* , < ) , sup ( x , RR* , < ) >. ) = if ( A = (/) , <. 0 , 0 >. , <. inf ( A , RR* , < ) , sup ( A , RR* , < ) >. ) ) |
7 |
|
opex |
|- <. 0 , 0 >. e. _V |
8 |
|
opex |
|- <. inf ( A , RR* , < ) , sup ( A , RR* , < ) >. e. _V |
9 |
7 8
|
ifex |
|- if ( A = (/) , <. 0 , 0 >. , <. inf ( A , RR* , < ) , sup ( A , RR* , < ) >. ) e. _V |
10 |
6 1 9
|
fvmpt |
|- ( A e. ran (,) -> ( F ` A ) = if ( A = (/) , <. 0 , 0 >. , <. inf ( A , RR* , < ) , sup ( A , RR* , < ) >. ) ) |