Metamath Proof Explorer


Theorem iooss1

Description: Subset relationship for open intervals of extended reals. (Contributed by NM, 7-Feb-2007) (Revised by Mario Carneiro, 20-Feb-2015)

Ref Expression
Assertion iooss1
|- ( ( A e. RR* /\ A <_ B ) -> ( B (,) C ) C_ ( A (,) C ) )

Proof

Step Hyp Ref Expression
1 df-ioo
 |-  (,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z < y ) } )
2 xrlelttr
 |-  ( ( A e. RR* /\ B e. RR* /\ w e. RR* ) -> ( ( A <_ B /\ B < w ) -> A < w ) )
3 1 1 2 ixxss1
 |-  ( ( A e. RR* /\ A <_ B ) -> ( B (,) C ) C_ ( A (,) C ) )