Metamath Proof Explorer


Theorem iooss2

Description: Subset relationship for open intervals of extended reals. (Contributed by NM, 7-Feb-2007) (Revised by Mario Carneiro, 3-Nov-2013)

Ref Expression
Assertion iooss2
|- ( ( C e. RR* /\ B <_ C ) -> ( A (,) B ) C_ ( A (,) C ) )

Proof

Step Hyp Ref Expression
1 df-ioo
 |-  (,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z < y ) } )
2 xrltletr
 |-  ( ( w e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( w < B /\ B <_ C ) -> w < C ) )
3 1 1 2 ixxss2
 |-  ( ( C e. RR* /\ B <_ C ) -> ( A (,) B ) C_ ( A (,) C ) )