Description: An open interval is a subset of its closure. (Contributed by Paul Chapman, 18-Oct-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ioossicc | |- ( A (,) B ) C_ ( A [,] B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ioo | |- (,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z < y ) } ) |
|
| 2 | df-icc | |- [,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z <_ y ) } ) |
|
| 3 | xrltle | |- ( ( A e. RR* /\ w e. RR* ) -> ( A < w -> A <_ w ) ) |
|
| 4 | xrltle | |- ( ( w e. RR* /\ B e. RR* ) -> ( w < B -> w <_ B ) ) |
|
| 5 | 1 2 3 4 | ixxssixx | |- ( A (,) B ) C_ ( A [,] B ) |