Description: An open interval is a subset of its closure-below. (Contributed by Thierry Arnoux, 3-Mar-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ioossico | |- ( A (,) B ) C_ ( A [,) B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-ioo |  |-  (,) = ( a e. RR* , b e. RR* |-> { x e. RR* | ( a < x /\ x < b ) } ) | |
| 2 | df-ico |  |-  [,) = ( a e. RR* , b e. RR* |-> { x e. RR* | ( a <_ x /\ x < b ) } ) | |
| 3 | xrltle | |- ( ( A e. RR* /\ w e. RR* ) -> ( A < w -> A <_ w ) ) | |
| 4 | idd | |- ( ( w e. RR* /\ B e. RR* ) -> ( w < B -> w < B ) ) | |
| 5 | 1 2 3 4 | ixxssixx | |- ( A (,) B ) C_ ( A [,) B ) |