Description: An open interval is a subset of its right closure. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ioossioc | |- ( A (,) B ) C_ ( A (,] B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-ioo |  |-  (,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z < y ) } ) | |
| 2 | df-ioc |  |-  (,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z <_ y ) } ) | |
| 3 | idd | |- ( ( A e. RR* /\ w e. RR* ) -> ( A < w -> A < w ) ) | |
| 4 | xrltle | |- ( ( w e. RR* /\ B e. RR* ) -> ( w < B -> w <_ B ) ) | |
| 5 | 1 2 3 4 | ixxssixx | |- ( A (,) B ) C_ ( A (,] B ) |