Metamath Proof Explorer


Theorem ioossioc

Description: An open interval is a subset of its right closure. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion ioossioc
|- ( A (,) B ) C_ ( A (,] B )

Proof

Step Hyp Ref Expression
1 df-ioo
 |-  (,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z < y ) } )
2 df-ioc
 |-  (,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z <_ y ) } )
3 idd
 |-  ( ( A e. RR* /\ w e. RR* ) -> ( A < w -> A < w ) )
4 xrltle
 |-  ( ( w e. RR* /\ B e. RR* ) -> ( w < B -> w <_ B ) )
5 1 2 3 4 ixxssixx
 |-  ( A (,) B ) C_ ( A (,] B )