Description: An open interval is a subset of its right closure. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | ioossioc | |- ( A (,) B ) C_ ( A (,] B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ioo | |- (,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z < y ) } ) |
|
2 | df-ioc | |- (,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z <_ y ) } ) |
|
3 | idd | |- ( ( A e. RR* /\ w e. RR* ) -> ( A < w -> A < w ) ) |
|
4 | xrltle | |- ( ( w e. RR* /\ B e. RR* ) -> ( w < B -> w <_ B ) ) |
|
5 | 1 2 3 4 | ixxssixx | |- ( A (,) B ) C_ ( A (,] B ) |