| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp2 |  |-  ( ( A e. RR* /\ B e. RR* /\ A < B ) -> B e. RR* ) | 
						
							| 2 |  | iccid |  |-  ( B e. RR* -> ( B [,] B ) = { B } ) | 
						
							| 3 | 1 2 | syl |  |-  ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( B [,] B ) = { B } ) | 
						
							| 4 | 3 | uneq2d |  |-  ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( A (,) B ) u. ( B [,] B ) ) = ( ( A (,) B ) u. { B } ) ) | 
						
							| 5 |  | simp1 |  |-  ( ( A e. RR* /\ B e. RR* /\ A < B ) -> A e. RR* ) | 
						
							| 6 |  | simp3 |  |-  ( ( A e. RR* /\ B e. RR* /\ A < B ) -> A < B ) | 
						
							| 7 | 1 | xrleidd |  |-  ( ( A e. RR* /\ B e. RR* /\ A < B ) -> B <_ B ) | 
						
							| 8 |  | df-ioo |  |-  (,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z < y ) } ) | 
						
							| 9 |  | df-icc |  |-  [,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z <_ y ) } ) | 
						
							| 10 |  | xrlenlt |  |-  ( ( B e. RR* /\ w e. RR* ) -> ( B <_ w <-> -. w < B ) ) | 
						
							| 11 |  | df-ioc |  |-  (,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z <_ y ) } ) | 
						
							| 12 |  | simpl1 |  |-  ( ( ( w e. RR* /\ B e. RR* /\ B e. RR* ) /\ ( w < B /\ B <_ B ) ) -> w e. RR* ) | 
						
							| 13 |  | simpl2 |  |-  ( ( ( w e. RR* /\ B e. RR* /\ B e. RR* ) /\ ( w < B /\ B <_ B ) ) -> B e. RR* ) | 
						
							| 14 |  | simprl |  |-  ( ( ( w e. RR* /\ B e. RR* /\ B e. RR* ) /\ ( w < B /\ B <_ B ) ) -> w < B ) | 
						
							| 15 | 12 13 14 | xrltled |  |-  ( ( ( w e. RR* /\ B e. RR* /\ B e. RR* ) /\ ( w < B /\ B <_ B ) ) -> w <_ B ) | 
						
							| 16 | 15 | ex |  |-  ( ( w e. RR* /\ B e. RR* /\ B e. RR* ) -> ( ( w < B /\ B <_ B ) -> w <_ B ) ) | 
						
							| 17 |  | xrltletr |  |-  ( ( A e. RR* /\ B e. RR* /\ w e. RR* ) -> ( ( A < B /\ B <_ w ) -> A < w ) ) | 
						
							| 18 | 8 9 10 11 16 17 | ixxun |  |-  ( ( ( A e. RR* /\ B e. RR* /\ B e. RR* ) /\ ( A < B /\ B <_ B ) ) -> ( ( A (,) B ) u. ( B [,] B ) ) = ( A (,] B ) ) | 
						
							| 19 | 5 1 1 6 7 18 | syl32anc |  |-  ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( A (,) B ) u. ( B [,] B ) ) = ( A (,] B ) ) | 
						
							| 20 | 4 19 | eqtr3d |  |-  ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( A (,) B ) u. { B } ) = ( A (,] B ) ) |