Step |
Hyp |
Ref |
Expression |
1 |
|
iooval |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A (,) B ) = { x e. RR* | ( A < x /\ x < B ) } ) |
2 |
|
elioore |
|- ( x e. ( A (,) B ) -> x e. RR ) |
3 |
2
|
ssriv |
|- ( A (,) B ) C_ RR |
4 |
1 3
|
eqsstrrdi |
|- ( ( A e. RR* /\ B e. RR* ) -> { x e. RR* | ( A < x /\ x < B ) } C_ RR ) |
5 |
|
df-ss |
|- ( { x e. RR* | ( A < x /\ x < B ) } C_ RR <-> ( { x e. RR* | ( A < x /\ x < B ) } i^i RR ) = { x e. RR* | ( A < x /\ x < B ) } ) |
6 |
4 5
|
sylib |
|- ( ( A e. RR* /\ B e. RR* ) -> ( { x e. RR* | ( A < x /\ x < B ) } i^i RR ) = { x e. RR* | ( A < x /\ x < B ) } ) |
7 |
|
inrab2 |
|- ( { x e. RR* | ( A < x /\ x < B ) } i^i RR ) = { x e. ( RR* i^i RR ) | ( A < x /\ x < B ) } |
8 |
|
ressxr |
|- RR C_ RR* |
9 |
|
sseqin2 |
|- ( RR C_ RR* <-> ( RR* i^i RR ) = RR ) |
10 |
8 9
|
mpbi |
|- ( RR* i^i RR ) = RR |
11 |
10
|
rabeqi |
|- { x e. ( RR* i^i RR ) | ( A < x /\ x < B ) } = { x e. RR | ( A < x /\ x < B ) } |
12 |
7 11
|
eqtri |
|- ( { x e. RR* | ( A < x /\ x < B ) } i^i RR ) = { x e. RR | ( A < x /\ x < B ) } |
13 |
6 12
|
eqtr3di |
|- ( ( A e. RR* /\ B e. RR* ) -> { x e. RR* | ( A < x /\ x < B ) } = { x e. RR | ( A < x /\ x < B ) } ) |
14 |
1 13
|
eqtrd |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A (,) B ) = { x e. RR | ( A < x /\ x < B ) } ) |