| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ioombl |  |-  ( A (,) B ) e. dom vol | 
						
							| 2 |  | mblvol |  |-  ( ( A (,) B ) e. dom vol -> ( vol ` ( A (,) B ) ) = ( vol* ` ( A (,) B ) ) ) | 
						
							| 3 | 1 2 | mp1i |  |-  ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A (,) B ) ) = ( vol* ` ( A (,) B ) ) ) | 
						
							| 4 |  | ltle |  |-  ( ( B e. RR /\ A e. RR ) -> ( B < A -> B <_ A ) ) | 
						
							| 5 | 4 | ancoms |  |-  ( ( A e. RR /\ B e. RR ) -> ( B < A -> B <_ A ) ) | 
						
							| 6 | 5 | imdistani |  |-  ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> ( ( A e. RR /\ B e. RR ) /\ B <_ A ) ) | 
						
							| 7 |  | rexr |  |-  ( A e. RR -> A e. RR* ) | 
						
							| 8 |  | rexr |  |-  ( B e. RR -> B e. RR* ) | 
						
							| 9 |  | ioo0 |  |-  ( ( A e. RR* /\ B e. RR* ) -> ( ( A (,) B ) = (/) <-> B <_ A ) ) | 
						
							| 10 | 7 8 9 | syl2an |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( A (,) B ) = (/) <-> B <_ A ) ) | 
						
							| 11 | 10 | biimpar |  |-  ( ( ( A e. RR /\ B e. RR ) /\ B <_ A ) -> ( A (,) B ) = (/) ) | 
						
							| 12 |  | fveq2 |  |-  ( ( A (,) B ) = (/) -> ( vol* ` ( A (,) B ) ) = ( vol* ` (/) ) ) | 
						
							| 13 |  | ovol0 |  |-  ( vol* ` (/) ) = 0 | 
						
							| 14 | 12 13 | eqtrdi |  |-  ( ( A (,) B ) = (/) -> ( vol* ` ( A (,) B ) ) = 0 ) | 
						
							| 15 |  | 0re |  |-  0 e. RR | 
						
							| 16 | 14 15 | eqeltrdi |  |-  ( ( A (,) B ) = (/) -> ( vol* ` ( A (,) B ) ) e. RR ) | 
						
							| 17 | 6 11 16 | 3syl |  |-  ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> ( vol* ` ( A (,) B ) ) e. RR ) | 
						
							| 18 |  | ovolioo |  |-  ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol* ` ( A (,) B ) ) = ( B - A ) ) | 
						
							| 19 | 18 | 3expa |  |-  ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( vol* ` ( A (,) B ) ) = ( B - A ) ) | 
						
							| 20 |  | resubcl |  |-  ( ( B e. RR /\ A e. RR ) -> ( B - A ) e. RR ) | 
						
							| 21 | 20 | ancoms |  |-  ( ( A e. RR /\ B e. RR ) -> ( B - A ) e. RR ) | 
						
							| 22 | 21 | adantr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( B - A ) e. RR ) | 
						
							| 23 | 19 22 | eqeltrd |  |-  ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( vol* ` ( A (,) B ) ) e. RR ) | 
						
							| 24 |  | simpr |  |-  ( ( A e. RR /\ B e. RR ) -> B e. RR ) | 
						
							| 25 |  | simpl |  |-  ( ( A e. RR /\ B e. RR ) -> A e. RR ) | 
						
							| 26 | 17 23 24 25 | ltlecasei |  |-  ( ( A e. RR /\ B e. RR ) -> ( vol* ` ( A (,) B ) ) e. RR ) | 
						
							| 27 | 3 26 | eqeltrd |  |-  ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A (,) B ) ) e. RR ) |