Metamath Proof Explorer


Theorem ioran

Description: Negated disjunction in terms of conjunction (De Morgan's law). Compare Theorem *4.56 of WhiteheadRussell p. 120. (Contributed by NM, 3-Jan-1993) (Proof shortened by Andrew Salmon, 7-May-2011)

Ref Expression
Assertion ioran
|- ( -. ( ph \/ ps ) <-> ( -. ph /\ -. ps ) )

Proof

Step Hyp Ref Expression
1 pm4.65
 |-  ( -. ( -. ph -> ps ) <-> ( -. ph /\ -. ps ) )
2 pm4.64
 |-  ( ( -. ph -> ps ) <-> ( ph \/ ps ) )
3 1 2 xchnxbi
 |-  ( -. ( ph \/ ps ) <-> ( -. ph /\ -. ps ) )