| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iota2.1 |
|- ( x = A -> ( ph <-> ps ) ) |
| 2 |
|
elex |
|- ( A e. B -> A e. _V ) |
| 3 |
|
simpl |
|- ( ( A e. _V /\ E! x ph ) -> A e. _V ) |
| 4 |
|
simpr |
|- ( ( A e. _V /\ E! x ph ) -> E! x ph ) |
| 5 |
1
|
adantl |
|- ( ( ( A e. _V /\ E! x ph ) /\ x = A ) -> ( ph <-> ps ) ) |
| 6 |
|
nfv |
|- F/ x A e. _V |
| 7 |
|
nfeu1 |
|- F/ x E! x ph |
| 8 |
6 7
|
nfan |
|- F/ x ( A e. _V /\ E! x ph ) |
| 9 |
|
nfvd |
|- ( ( A e. _V /\ E! x ph ) -> F/ x ps ) |
| 10 |
|
nfcvd |
|- ( ( A e. _V /\ E! x ph ) -> F/_ x A ) |
| 11 |
3 4 5 8 9 10
|
iota2df |
|- ( ( A e. _V /\ E! x ph ) -> ( ps <-> ( iota x ph ) = A ) ) |
| 12 |
2 11
|
sylan |
|- ( ( A e. B /\ E! x ph ) -> ( ps <-> ( iota x ph ) = A ) ) |