| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eu6 |
|- ( E! x ph <-> E. z A. x ( ph <-> x = z ) ) |
| 2 |
|
biimpr |
|- ( ( ph <-> x = z ) -> ( x = z -> ph ) ) |
| 3 |
2
|
alimi |
|- ( A. x ( ph <-> x = z ) -> A. x ( x = z -> ph ) ) |
| 4 |
|
sb6 |
|- ( [ z / x ] ph <-> A. x ( x = z -> ph ) ) |
| 5 |
3 4
|
sylibr |
|- ( A. x ( ph <-> x = z ) -> [ z / x ] ph ) |
| 6 |
|
iotaval |
|- ( A. x ( ph <-> x = z ) -> ( iota x ph ) = z ) |
| 7 |
6
|
eqcomd |
|- ( A. x ( ph <-> x = z ) -> z = ( iota x ph ) ) |
| 8 |
|
dfsbcq2 |
|- ( z = ( iota x ph ) -> ( [ z / x ] ph <-> [. ( iota x ph ) / x ]. ph ) ) |
| 9 |
7 8
|
syl |
|- ( A. x ( ph <-> x = z ) -> ( [ z / x ] ph <-> [. ( iota x ph ) / x ]. ph ) ) |
| 10 |
5 9
|
mpbid |
|- ( A. x ( ph <-> x = z ) -> [. ( iota x ph ) / x ]. ph ) |
| 11 |
10
|
exlimiv |
|- ( E. z A. x ( ph <-> x = z ) -> [. ( iota x ph ) / x ]. ph ) |
| 12 |
1 11
|
sylbi |
|- ( E! x ph -> [. ( iota x ph ) / x ]. ph ) |