Step |
Hyp |
Ref |
Expression |
1 |
|
iota4 |
|- ( E! x ( ph /\ ps ) -> [. ( iota x ( ph /\ ps ) ) / x ]. ( ph /\ ps ) ) |
2 |
|
iotaex |
|- ( iota x ( ph /\ ps ) ) e. _V |
3 |
|
simpl |
|- ( ( ph /\ ps ) -> ph ) |
4 |
3
|
sbcth |
|- ( ( iota x ( ph /\ ps ) ) e. _V -> [. ( iota x ( ph /\ ps ) ) / x ]. ( ( ph /\ ps ) -> ph ) ) |
5 |
2 4
|
ax-mp |
|- [. ( iota x ( ph /\ ps ) ) / x ]. ( ( ph /\ ps ) -> ph ) |
6 |
|
sbcimg |
|- ( ( iota x ( ph /\ ps ) ) e. _V -> ( [. ( iota x ( ph /\ ps ) ) / x ]. ( ( ph /\ ps ) -> ph ) <-> ( [. ( iota x ( ph /\ ps ) ) / x ]. ( ph /\ ps ) -> [. ( iota x ( ph /\ ps ) ) / x ]. ph ) ) ) |
7 |
2 6
|
ax-mp |
|- ( [. ( iota x ( ph /\ ps ) ) / x ]. ( ( ph /\ ps ) -> ph ) <-> ( [. ( iota x ( ph /\ ps ) ) / x ]. ( ph /\ ps ) -> [. ( iota x ( ph /\ ps ) ) / x ]. ph ) ) |
8 |
5 7
|
mpbi |
|- ( [. ( iota x ( ph /\ ps ) ) / x ]. ( ph /\ ps ) -> [. ( iota x ( ph /\ ps ) ) / x ]. ph ) |
9 |
1 8
|
syl |
|- ( E! x ( ph /\ ps ) -> [. ( iota x ( ph /\ ps ) ) / x ]. ph ) |