| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iota4 |
|- ( E! x ( ph /\ ps ) -> [. ( iota x ( ph /\ ps ) ) / x ]. ( ph /\ ps ) ) |
| 2 |
|
iotaex |
|- ( iota x ( ph /\ ps ) ) e. _V |
| 3 |
|
simpl |
|- ( ( ph /\ ps ) -> ph ) |
| 4 |
3
|
sbcth |
|- ( ( iota x ( ph /\ ps ) ) e. _V -> [. ( iota x ( ph /\ ps ) ) / x ]. ( ( ph /\ ps ) -> ph ) ) |
| 5 |
2 4
|
ax-mp |
|- [. ( iota x ( ph /\ ps ) ) / x ]. ( ( ph /\ ps ) -> ph ) |
| 6 |
|
sbcimg |
|- ( ( iota x ( ph /\ ps ) ) e. _V -> ( [. ( iota x ( ph /\ ps ) ) / x ]. ( ( ph /\ ps ) -> ph ) <-> ( [. ( iota x ( ph /\ ps ) ) / x ]. ( ph /\ ps ) -> [. ( iota x ( ph /\ ps ) ) / x ]. ph ) ) ) |
| 7 |
2 6
|
ax-mp |
|- ( [. ( iota x ( ph /\ ps ) ) / x ]. ( ( ph /\ ps ) -> ph ) <-> ( [. ( iota x ( ph /\ ps ) ) / x ]. ( ph /\ ps ) -> [. ( iota x ( ph /\ ps ) ) / x ]. ph ) ) |
| 8 |
5 7
|
mpbi |
|- ( [. ( iota x ( ph /\ ps ) ) / x ]. ( ph /\ ps ) -> [. ( iota x ( ph /\ ps ) ) / x ]. ph ) |
| 9 |
1 8
|
syl |
|- ( E! x ( ph /\ ps ) -> [. ( iota x ( ph /\ ps ) ) / x ]. ph ) |