Step |
Hyp |
Ref |
Expression |
1 |
|
iota5.1 |
|- ( ( ph /\ A e. V ) -> ( ps <-> x = A ) ) |
2 |
1
|
alrimiv |
|- ( ( ph /\ A e. V ) -> A. x ( ps <-> x = A ) ) |
3 |
|
eqeq2 |
|- ( y = A -> ( x = y <-> x = A ) ) |
4 |
3
|
bibi2d |
|- ( y = A -> ( ( ps <-> x = y ) <-> ( ps <-> x = A ) ) ) |
5 |
4
|
albidv |
|- ( y = A -> ( A. x ( ps <-> x = y ) <-> A. x ( ps <-> x = A ) ) ) |
6 |
|
eqeq2 |
|- ( y = A -> ( ( iota x ps ) = y <-> ( iota x ps ) = A ) ) |
7 |
5 6
|
imbi12d |
|- ( y = A -> ( ( A. x ( ps <-> x = y ) -> ( iota x ps ) = y ) <-> ( A. x ( ps <-> x = A ) -> ( iota x ps ) = A ) ) ) |
8 |
|
iotaval |
|- ( A. x ( ps <-> x = y ) -> ( iota x ps ) = y ) |
9 |
7 8
|
vtoclg |
|- ( A e. V -> ( A. x ( ps <-> x = A ) -> ( iota x ps ) = A ) ) |
10 |
9
|
adantl |
|- ( ( ph /\ A e. V ) -> ( A. x ( ps <-> x = A ) -> ( iota x ps ) = A ) ) |
11 |
2 10
|
mpd |
|- ( ( ph /\ A e. V ) -> ( iota x ps ) = A ) |