Metamath Proof Explorer


Theorem iotabi

Description: Equivalence theorem for descriptions. (Contributed by Andrew Salmon, 30-Jun-2011)

Ref Expression
Assertion iotabi
|- ( A. x ( ph <-> ps ) -> ( iota x ph ) = ( iota x ps ) )

Proof

Step Hyp Ref Expression
1 abbi1
 |-  ( A. x ( ph <-> ps ) -> { x | ph } = { x | ps } )
2 1 eqeq1d
 |-  ( A. x ( ph <-> ps ) -> ( { x | ph } = { z } <-> { x | ps } = { z } ) )
3 2 abbidv
 |-  ( A. x ( ph <-> ps ) -> { z | { x | ph } = { z } } = { z | { x | ps } = { z } } )
4 3 unieqd
 |-  ( A. x ( ph <-> ps ) -> U. { z | { x | ph } = { z } } = U. { z | { x | ps } = { z } } )
5 df-iota
 |-  ( iota x ph ) = U. { z | { x | ph } = { z } }
6 df-iota
 |-  ( iota x ps ) = U. { z | { x | ps } = { z } }
7 4 5 6 3eqtr4g
 |-  ( A. x ( ph <-> ps ) -> ( iota x ph ) = ( iota x ps ) )