Metamath Proof Explorer


Theorem iotacl

Description: Membership law for descriptions.

This can be useful for expanding an unbounded iota-based definition (see df-iota ). If you have a bounded iota-based definition, riotacl2 may be useful.

(Contributed by Andrew Salmon, 1-Aug-2011)

Ref Expression
Assertion iotacl
|- ( E! x ph -> ( iota x ph ) e. { x | ph } )

Proof

Step Hyp Ref Expression
1 iota4
 |-  ( E! x ph -> [. ( iota x ph ) / x ]. ph )
2 df-sbc
 |-  ( [. ( iota x ph ) / x ]. ph <-> ( iota x ph ) e. { x | ph } )
3 1 2 sylib
 |-  ( E! x ph -> ( iota x ph ) e. { x | ph } )