Step |
Hyp |
Ref |
Expression |
1 |
|
drsb1 |
|- ( A. x x = y -> ( [ z / x ] ph <-> [ z / y ] ph ) ) |
2 |
|
df-clab |
|- ( z e. { x | ph } <-> [ z / x ] ph ) |
3 |
|
df-clab |
|- ( z e. { y | ph } <-> [ z / y ] ph ) |
4 |
1 2 3
|
3bitr4g |
|- ( A. x x = y -> ( z e. { x | ph } <-> z e. { y | ph } ) ) |
5 |
4
|
eqrdv |
|- ( A. x x = y -> { x | ph } = { y | ph } ) |
6 |
5
|
eqeq1d |
|- ( A. x x = y -> ( { x | ph } = { z } <-> { y | ph } = { z } ) ) |
7 |
6
|
abbidv |
|- ( A. x x = y -> { z | { x | ph } = { z } } = { z | { y | ph } = { z } } ) |
8 |
7
|
unieqd |
|- ( A. x x = y -> U. { z | { x | ph } = { z } } = U. { z | { y | ph } = { z } } ) |
9 |
|
df-iota |
|- ( iota x ph ) = U. { z | { x | ph } = { z } } |
10 |
|
df-iota |
|- ( iota y ph ) = U. { z | { y | ph } = { z } } |
11 |
8 9 10
|
3eqtr4g |
|- ( A. x x = y -> ( iota x ph ) = ( iota y ph ) ) |