Step |
Hyp |
Ref |
Expression |
1 |
|
iotaval |
|- ( A. x ( ph <-> x = z ) -> ( iota x ph ) = z ) |
2 |
1
|
eqcomd |
|- ( A. x ( ph <-> x = z ) -> z = ( iota x ph ) ) |
3 |
2
|
eximi |
|- ( E. z A. x ( ph <-> x = z ) -> E. z z = ( iota x ph ) ) |
4 |
|
eu6 |
|- ( E! x ph <-> E. z A. x ( ph <-> x = z ) ) |
5 |
|
isset |
|- ( ( iota x ph ) e. _V <-> E. z z = ( iota x ph ) ) |
6 |
3 4 5
|
3imtr4i |
|- ( E! x ph -> ( iota x ph ) e. _V ) |
7 |
|
iotanul |
|- ( -. E! x ph -> ( iota x ph ) = (/) ) |
8 |
|
0ex |
|- (/) e. _V |
9 |
7 8
|
eqeltrdi |
|- ( -. E! x ph -> ( iota x ph ) e. _V ) |
10 |
6 9
|
pm2.61i |
|- ( iota x ph ) e. _V |