Description: Theorem 8.23 in Quine p. 58. This theorem proves the existence of the iota class under our definition. (Contributed by Andrew Salmon, 11-Jul-2011) Remove dependency on ax-10 , ax-11 , ax-12 . (Revised by SN, 6-Nov-2024)
|- ( iota x ph ) e. _V
|- ( { x | ph } = { y } -> ( iota x ph ) = y )
|- y e. _V
|- ( { x | ph } = { y } -> ( iota x ph ) e. _V )
|- ( E. y { x | ph } = { y } -> ( iota x ph ) e. _V )
|- ( -. E. y { x | ph } = { y } -> ( iota x ph ) = (/) )
|- (/) e. _V
|- ( -. E. y { x | ph } = { y } -> ( iota x ph ) e. _V )