Metamath Proof Explorer


Theorem iotaex

Description: Theorem 8.23 in Quine p. 58. This theorem proves the existence of the iota class under our definition. (Contributed by Andrew Salmon, 11-Jul-2011)

Ref Expression
Assertion iotaex
|- ( iota x ph ) e. _V

Proof

Step Hyp Ref Expression
1 iotaval
 |-  ( A. x ( ph <-> x = z ) -> ( iota x ph ) = z )
2 1 eqcomd
 |-  ( A. x ( ph <-> x = z ) -> z = ( iota x ph ) )
3 2 eximi
 |-  ( E. z A. x ( ph <-> x = z ) -> E. z z = ( iota x ph ) )
4 eu6
 |-  ( E! x ph <-> E. z A. x ( ph <-> x = z ) )
5 isset
 |-  ( ( iota x ph ) e. _V <-> E. z z = ( iota x ph ) )
6 3 4 5 3imtr4i
 |-  ( E! x ph -> ( iota x ph ) e. _V )
7 iotanul
 |-  ( -. E! x ph -> ( iota x ph ) = (/) )
8 0ex
 |-  (/) e. _V
9 7 8 eqeltrdi
 |-  ( -. E! x ph -> ( iota x ph ) e. _V )
10 6 9 pm2.61i
 |-  ( iota x ph ) e. _V