Metamath Proof Explorer


Theorem iotaex

Description: Theorem 8.23 in Quine p. 58. This theorem proves the existence of the iota class under our definition. (Contributed by Andrew Salmon, 11-Jul-2011) Remove dependency on ax-10 , ax-11 , ax-12 . (Revised by SN, 6-Nov-2024)

Ref Expression
Assertion iotaex
|- ( iota x ph ) e. _V

Proof

Step Hyp Ref Expression
1 iotaval2
 |-  ( { x | ph } = { y } -> ( iota x ph ) = y )
2 vex
 |-  y e. _V
3 1 2 eqeltrdi
 |-  ( { x | ph } = { y } -> ( iota x ph ) e. _V )
4 3 exlimiv
 |-  ( E. y { x | ph } = { y } -> ( iota x ph ) e. _V )
5 iotanul2
 |-  ( -. E. y { x | ph } = { y } -> ( iota x ph ) = (/) )
6 0ex
 |-  (/) e. _V
7 5 6 eqeltrdi
 |-  ( -. E. y { x | ph } = { y } -> ( iota x ph ) e. _V )
8 4 7 pm2.61i
 |-  ( iota x ph ) e. _V