Metamath Proof Explorer


Theorem iotaint

Description: Equivalence between two different forms of iota . (Contributed by Mario Carneiro, 24-Dec-2016)

Ref Expression
Assertion iotaint
|- ( E! x ph -> ( iota x ph ) = |^| { x | ph } )

Proof

Step Hyp Ref Expression
1 iotauni
 |-  ( E! x ph -> ( iota x ph ) = U. { x | ph } )
2 uniintab
 |-  ( E! x ph <-> U. { x | ph } = |^| { x | ph } )
3 2 biimpi
 |-  ( E! x ph -> U. { x | ph } = |^| { x | ph } )
4 1 3 eqtrd
 |-  ( E! x ph -> ( iota x ph ) = |^| { x | ph } )