Metamath Proof Explorer


Theorem iotajust

Description: Soundness justification theorem for df-iota . (Contributed by Andrew Salmon, 29-Jun-2011)

Ref Expression
Assertion iotajust
|- U. { y | { x | ph } = { y } } = U. { z | { x | ph } = { z } }

Proof

Step Hyp Ref Expression
1 sneq
 |-  ( y = w -> { y } = { w } )
2 1 eqeq2d
 |-  ( y = w -> ( { x | ph } = { y } <-> { x | ph } = { w } ) )
3 2 cbvabv
 |-  { y | { x | ph } = { y } } = { w | { x | ph } = { w } }
4 sneq
 |-  ( w = z -> { w } = { z } )
5 4 eqeq2d
 |-  ( w = z -> ( { x | ph } = { w } <-> { x | ph } = { z } ) )
6 5 cbvabv
 |-  { w | { x | ph } = { w } } = { z | { x | ph } = { z } }
7 3 6 eqtri
 |-  { y | { x | ph } = { y } } = { z | { x | ph } = { z } }
8 7 unieqi
 |-  U. { y | { x | ph } = { y } } = U. { z | { x | ph } = { z } }