| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iotan0.1 |
|- ( x = A -> ( ph <-> ps ) ) |
| 2 |
|
pm13.18 |
|- ( ( A = ( iota x ph ) /\ A =/= (/) ) -> ( iota x ph ) =/= (/) ) |
| 3 |
2
|
expcom |
|- ( A =/= (/) -> ( A = ( iota x ph ) -> ( iota x ph ) =/= (/) ) ) |
| 4 |
|
iotanul |
|- ( -. E! x ph -> ( iota x ph ) = (/) ) |
| 5 |
4
|
necon1ai |
|- ( ( iota x ph ) =/= (/) -> E! x ph ) |
| 6 |
3 5
|
syl6 |
|- ( A =/= (/) -> ( A = ( iota x ph ) -> E! x ph ) ) |
| 7 |
6
|
a1i |
|- ( A e. V -> ( A =/= (/) -> ( A = ( iota x ph ) -> E! x ph ) ) ) |
| 8 |
7
|
3imp |
|- ( ( A e. V /\ A =/= (/) /\ A = ( iota x ph ) ) -> E! x ph ) |
| 9 |
|
eqcom |
|- ( A = ( iota x ph ) <-> ( iota x ph ) = A ) |
| 10 |
1
|
iota2 |
|- ( ( A e. V /\ E! x ph ) -> ( ps <-> ( iota x ph ) = A ) ) |
| 11 |
10
|
biimprd |
|- ( ( A e. V /\ E! x ph ) -> ( ( iota x ph ) = A -> ps ) ) |
| 12 |
9 11
|
biimtrid |
|- ( ( A e. V /\ E! x ph ) -> ( A = ( iota x ph ) -> ps ) ) |
| 13 |
12
|
impancom |
|- ( ( A e. V /\ A = ( iota x ph ) ) -> ( E! x ph -> ps ) ) |
| 14 |
13
|
3adant2 |
|- ( ( A e. V /\ A =/= (/) /\ A = ( iota x ph ) ) -> ( E! x ph -> ps ) ) |
| 15 |
8 14
|
mpd |
|- ( ( A e. V /\ A =/= (/) /\ A = ( iota x ph ) ) -> ps ) |