Step |
Hyp |
Ref |
Expression |
1 |
|
eu6 |
|- ( E! x ph <-> E. z A. x ( ph <-> x = z ) ) |
2 |
|
dfiota2 |
|- ( iota x ph ) = U. { z | A. x ( ph <-> x = z ) } |
3 |
|
alnex |
|- ( A. z -. A. x ( ph <-> x = z ) <-> -. E. z A. x ( ph <-> x = z ) ) |
4 |
|
dfnul2 |
|- (/) = { z | -. z = z } |
5 |
|
equid |
|- z = z |
6 |
5
|
tbt |
|- ( -. A. x ( ph <-> x = z ) <-> ( -. A. x ( ph <-> x = z ) <-> z = z ) ) |
7 |
6
|
biimpi |
|- ( -. A. x ( ph <-> x = z ) -> ( -. A. x ( ph <-> x = z ) <-> z = z ) ) |
8 |
7
|
con1bid |
|- ( -. A. x ( ph <-> x = z ) -> ( -. z = z <-> A. x ( ph <-> x = z ) ) ) |
9 |
8
|
alimi |
|- ( A. z -. A. x ( ph <-> x = z ) -> A. z ( -. z = z <-> A. x ( ph <-> x = z ) ) ) |
10 |
|
abbi1 |
|- ( A. z ( -. z = z <-> A. x ( ph <-> x = z ) ) -> { z | -. z = z } = { z | A. x ( ph <-> x = z ) } ) |
11 |
9 10
|
syl |
|- ( A. z -. A. x ( ph <-> x = z ) -> { z | -. z = z } = { z | A. x ( ph <-> x = z ) } ) |
12 |
4 11
|
eqtr2id |
|- ( A. z -. A. x ( ph <-> x = z ) -> { z | A. x ( ph <-> x = z ) } = (/) ) |
13 |
3 12
|
sylbir |
|- ( -. E. z A. x ( ph <-> x = z ) -> { z | A. x ( ph <-> x = z ) } = (/) ) |
14 |
13
|
unieqd |
|- ( -. E. z A. x ( ph <-> x = z ) -> U. { z | A. x ( ph <-> x = z ) } = U. (/) ) |
15 |
|
uni0 |
|- U. (/) = (/) |
16 |
14 15
|
eqtrdi |
|- ( -. E. z A. x ( ph <-> x = z ) -> U. { z | A. x ( ph <-> x = z ) } = (/) ) |
17 |
2 16
|
eqtrid |
|- ( -. E. z A. x ( ph <-> x = z ) -> ( iota x ph ) = (/) ) |
18 |
1 17
|
sylnbi |
|- ( -. E! x ph -> ( iota x ph ) = (/) ) |