Metamath Proof Explorer


Theorem iotanul

Description: Theorem 8.22 in Quine p. 57. This theorem is the result if there isn't exactly one x that satisfies ph . (Contributed by Andrew Salmon, 11-Jul-2011)

Ref Expression
Assertion iotanul
|- ( -. E! x ph -> ( iota x ph ) = (/) )

Proof

Step Hyp Ref Expression
1 eu6
 |-  ( E! x ph <-> E. z A. x ( ph <-> x = z ) )
2 dfiota2
 |-  ( iota x ph ) = U. { z | A. x ( ph <-> x = z ) }
3 alnex
 |-  ( A. z -. A. x ( ph <-> x = z ) <-> -. E. z A. x ( ph <-> x = z ) )
4 dfnul2
 |-  (/) = { z | -. z = z }
5 equid
 |-  z = z
6 5 tbt
 |-  ( -. A. x ( ph <-> x = z ) <-> ( -. A. x ( ph <-> x = z ) <-> z = z ) )
7 6 biimpi
 |-  ( -. A. x ( ph <-> x = z ) -> ( -. A. x ( ph <-> x = z ) <-> z = z ) )
8 7 con1bid
 |-  ( -. A. x ( ph <-> x = z ) -> ( -. z = z <-> A. x ( ph <-> x = z ) ) )
9 8 alimi
 |-  ( A. z -. A. x ( ph <-> x = z ) -> A. z ( -. z = z <-> A. x ( ph <-> x = z ) ) )
10 abbi1
 |-  ( A. z ( -. z = z <-> A. x ( ph <-> x = z ) ) -> { z | -. z = z } = { z | A. x ( ph <-> x = z ) } )
11 9 10 syl
 |-  ( A. z -. A. x ( ph <-> x = z ) -> { z | -. z = z } = { z | A. x ( ph <-> x = z ) } )
12 4 11 eqtr2id
 |-  ( A. z -. A. x ( ph <-> x = z ) -> { z | A. x ( ph <-> x = z ) } = (/) )
13 3 12 sylbir
 |-  ( -. E. z A. x ( ph <-> x = z ) -> { z | A. x ( ph <-> x = z ) } = (/) )
14 13 unieqd
 |-  ( -. E. z A. x ( ph <-> x = z ) -> U. { z | A. x ( ph <-> x = z ) } = U. (/) )
15 uni0
 |-  U. (/) = (/)
16 14 15 eqtrdi
 |-  ( -. E. z A. x ( ph <-> x = z ) -> U. { z | A. x ( ph <-> x = z ) } = (/) )
17 2 16 eqtrid
 |-  ( -. E. z A. x ( ph <-> x = z ) -> ( iota x ph ) = (/) )
18 1 17 sylnbi
 |-  ( -. E! x ph -> ( iota x ph ) = (/) )