Description: Theorem *14.272 in WhiteheadRussell p. 193. (Contributed by Andrew Salmon, 11-Jul-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | iotasbcq | |- ( A. x ( ph <-> ps ) -> ( [. ( iota x ph ) / y ]. ch <-> [. ( iota x ps ) / y ]. ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotabi | |- ( A. x ( ph <-> ps ) -> ( iota x ph ) = ( iota x ps ) ) |
|
2 | 1 | sbceq1d | |- ( A. x ( ph <-> ps ) -> ( [. ( iota x ph ) / y ]. ch <-> [. ( iota x ps ) / y ]. ch ) ) |