Metamath Proof Explorer


Theorem iotauni

Description: Equivalence between two different forms of iota . (Contributed by Andrew Salmon, 12-Jul-2011)

Ref Expression
Assertion iotauni
|- ( E! x ph -> ( iota x ph ) = U. { x | ph } )

Proof

Step Hyp Ref Expression
1 eu6
 |-  ( E! x ph <-> E. z A. x ( ph <-> x = z ) )
2 iotaval
 |-  ( A. x ( ph <-> x = z ) -> ( iota x ph ) = z )
3 uniabio
 |-  ( A. x ( ph <-> x = z ) -> U. { x | ph } = z )
4 2 3 eqtr4d
 |-  ( A. x ( ph <-> x = z ) -> ( iota x ph ) = U. { x | ph } )
5 4 exlimiv
 |-  ( E. z A. x ( ph <-> x = z ) -> ( iota x ph ) = U. { x | ph } )
6 1 5 sylbi
 |-  ( E! x ph -> ( iota x ph ) = U. { x | ph } )