Metamath Proof Explorer


Theorem iotaval

Description: Theorem 8.19 in Quine p. 57. This theorem is the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011)

Ref Expression
Assertion iotaval
|- ( A. x ( ph <-> x = y ) -> ( iota x ph ) = y )

Proof

Step Hyp Ref Expression
1 dfiota2
 |-  ( iota x ph ) = U. { z | A. x ( ph <-> x = z ) }
2 sbeqalb
 |-  ( y e. _V -> ( ( A. x ( ph <-> x = y ) /\ A. x ( ph <-> x = z ) ) -> y = z ) )
3 2 elv
 |-  ( ( A. x ( ph <-> x = y ) /\ A. x ( ph <-> x = z ) ) -> y = z )
4 3 ex
 |-  ( A. x ( ph <-> x = y ) -> ( A. x ( ph <-> x = z ) -> y = z ) )
5 equequ2
 |-  ( y = z -> ( x = y <-> x = z ) )
6 5 bibi2d
 |-  ( y = z -> ( ( ph <-> x = y ) <-> ( ph <-> x = z ) ) )
7 6 biimpd
 |-  ( y = z -> ( ( ph <-> x = y ) -> ( ph <-> x = z ) ) )
8 7 alimdv
 |-  ( y = z -> ( A. x ( ph <-> x = y ) -> A. x ( ph <-> x = z ) ) )
9 8 com12
 |-  ( A. x ( ph <-> x = y ) -> ( y = z -> A. x ( ph <-> x = z ) ) )
10 4 9 impbid
 |-  ( A. x ( ph <-> x = y ) -> ( A. x ( ph <-> x = z ) <-> y = z ) )
11 equcom
 |-  ( y = z <-> z = y )
12 10 11 bitrdi
 |-  ( A. x ( ph <-> x = y ) -> ( A. x ( ph <-> x = z ) <-> z = y ) )
13 12 alrimiv
 |-  ( A. x ( ph <-> x = y ) -> A. z ( A. x ( ph <-> x = z ) <-> z = y ) )
14 uniabio
 |-  ( A. z ( A. x ( ph <-> x = z ) <-> z = y ) -> U. { z | A. x ( ph <-> x = z ) } = y )
15 13 14 syl
 |-  ( A. x ( ph <-> x = y ) -> U. { z | A. x ( ph <-> x = z ) } = y )
16 1 15 eqtrid
 |-  ( A. x ( ph <-> x = y ) -> ( iota x ph ) = y )