Step |
Hyp |
Ref |
Expression |
1 |
|
dfiota2 |
|- ( iota x ph ) = U. { z | A. x ( ph <-> x = z ) } |
2 |
|
sbeqalb |
|- ( y e. _V -> ( ( A. x ( ph <-> x = y ) /\ A. x ( ph <-> x = z ) ) -> y = z ) ) |
3 |
2
|
elv |
|- ( ( A. x ( ph <-> x = y ) /\ A. x ( ph <-> x = z ) ) -> y = z ) |
4 |
3
|
ex |
|- ( A. x ( ph <-> x = y ) -> ( A. x ( ph <-> x = z ) -> y = z ) ) |
5 |
|
equequ2 |
|- ( y = z -> ( x = y <-> x = z ) ) |
6 |
5
|
bibi2d |
|- ( y = z -> ( ( ph <-> x = y ) <-> ( ph <-> x = z ) ) ) |
7 |
6
|
biimpd |
|- ( y = z -> ( ( ph <-> x = y ) -> ( ph <-> x = z ) ) ) |
8 |
7
|
alimdv |
|- ( y = z -> ( A. x ( ph <-> x = y ) -> A. x ( ph <-> x = z ) ) ) |
9 |
8
|
com12 |
|- ( A. x ( ph <-> x = y ) -> ( y = z -> A. x ( ph <-> x = z ) ) ) |
10 |
4 9
|
impbid |
|- ( A. x ( ph <-> x = y ) -> ( A. x ( ph <-> x = z ) <-> y = z ) ) |
11 |
|
equcom |
|- ( y = z <-> z = y ) |
12 |
10 11
|
bitrdi |
|- ( A. x ( ph <-> x = y ) -> ( A. x ( ph <-> x = z ) <-> z = y ) ) |
13 |
12
|
alrimiv |
|- ( A. x ( ph <-> x = y ) -> A. z ( A. x ( ph <-> x = z ) <-> z = y ) ) |
14 |
|
uniabio |
|- ( A. z ( A. x ( ph <-> x = z ) <-> z = y ) -> U. { z | A. x ( ph <-> x = z ) } = y ) |
15 |
13 14
|
syl |
|- ( A. x ( ph <-> x = y ) -> U. { z | A. x ( ph <-> x = z ) } = y ) |
16 |
1 15
|
eqtrid |
|- ( A. x ( ph <-> x = y ) -> ( iota x ph ) = y ) |