Step |
Hyp |
Ref |
Expression |
1 |
|
iotaval |
|- ( A. x ( ph <-> x = y ) -> ( iota x ph ) = y ) |
2 |
|
iotasbc |
|- ( E! x ph -> ( [. ( iota x ph ) / z ]. z = y <-> E. z ( A. x ( ph <-> x = z ) /\ z = y ) ) ) |
3 |
|
iotaexeu |
|- ( E! x ph -> ( iota x ph ) e. _V ) |
4 |
|
eqsbc1 |
|- ( ( iota x ph ) e. _V -> ( [. ( iota x ph ) / z ]. z = y <-> ( iota x ph ) = y ) ) |
5 |
3 4
|
syl |
|- ( E! x ph -> ( [. ( iota x ph ) / z ]. z = y <-> ( iota x ph ) = y ) ) |
6 |
2 5
|
bitr3d |
|- ( E! x ph -> ( E. z ( A. x ( ph <-> x = z ) /\ z = y ) <-> ( iota x ph ) = y ) ) |
7 |
|
equequ2 |
|- ( z = y -> ( x = z <-> x = y ) ) |
8 |
7
|
bibi2d |
|- ( z = y -> ( ( ph <-> x = z ) <-> ( ph <-> x = y ) ) ) |
9 |
8
|
albidv |
|- ( z = y -> ( A. x ( ph <-> x = z ) <-> A. x ( ph <-> x = y ) ) ) |
10 |
9
|
biimpac |
|- ( ( A. x ( ph <-> x = z ) /\ z = y ) -> A. x ( ph <-> x = y ) ) |
11 |
10
|
exlimiv |
|- ( E. z ( A. x ( ph <-> x = z ) /\ z = y ) -> A. x ( ph <-> x = y ) ) |
12 |
6 11
|
syl6bir |
|- ( E! x ph -> ( ( iota x ph ) = y -> A. x ( ph <-> x = y ) ) ) |
13 |
1 12
|
impbid2 |
|- ( E! x ph -> ( A. x ( ph <-> x = y ) <-> ( iota x ph ) = y ) ) |