Metamath Proof Explorer


Theorem iotavalsb

Description: Theorem *14.242 in WhiteheadRussell p. 192. (Contributed by Andrew Salmon, 11-Jul-2011)

Ref Expression
Assertion iotavalsb
|- ( A. x ( ph <-> x = y ) -> ( [. y / z ]. ps <-> [. ( iota x ph ) / z ]. ps ) )

Proof

Step Hyp Ref Expression
1 19.8a
 |-  ( A. x ( ph <-> x = y ) -> E. y A. x ( ph <-> x = y ) )
2 eu6
 |-  ( E! x ph <-> E. y A. x ( ph <-> x = y ) )
3 iotavalb
 |-  ( E! x ph -> ( A. x ( ph <-> x = y ) <-> ( iota x ph ) = y ) )
4 dfsbcq
 |-  ( y = ( iota x ph ) -> ( [. y / z ]. ps <-> [. ( iota x ph ) / z ]. ps ) )
5 4 eqcoms
 |-  ( ( iota x ph ) = y -> ( [. y / z ]. ps <-> [. ( iota x ph ) / z ]. ps ) )
6 3 5 syl6bi
 |-  ( E! x ph -> ( A. x ( ph <-> x = y ) -> ( [. y / z ]. ps <-> [. ( iota x ph ) / z ]. ps ) ) )
7 2 6 sylbir
 |-  ( E. y A. x ( ph <-> x = y ) -> ( A. x ( ph <-> x = y ) -> ( [. y / z ]. ps <-> [. ( iota x ph ) / z ]. ps ) ) )
8 1 7 mpcom
 |-  ( A. x ( ph <-> x = y ) -> ( [. y / z ]. ps <-> [. ( iota x ph ) / z ]. ps ) )