| Step | Hyp | Ref | Expression | 
						
							| 1 |  | phlsrng.f |  |-  F = ( Scalar ` W ) | 
						
							| 2 |  | phllmhm.h |  |-  ., = ( .i ` W ) | 
						
							| 3 |  | phllmhm.v |  |-  V = ( Base ` W ) | 
						
							| 4 |  | ip0l.z |  |-  Z = ( 0g ` F ) | 
						
							| 5 |  | ip0l.o |  |-  .0. = ( 0g ` W ) | 
						
							| 6 |  | phllmod |  |-  ( W e. PreHil -> W e. LMod ) | 
						
							| 7 |  | lmodgrp |  |-  ( W e. LMod -> W e. Grp ) | 
						
							| 8 | 3 5 | grpidcl |  |-  ( W e. Grp -> .0. e. V ) | 
						
							| 9 | 6 7 8 | 3syl |  |-  ( W e. PreHil -> .0. e. V ) | 
						
							| 10 | 9 | adantr |  |-  ( ( W e. PreHil /\ A e. V ) -> .0. e. V ) | 
						
							| 11 |  | oveq1 |  |-  ( x = .0. -> ( x ., A ) = ( .0. ., A ) ) | 
						
							| 12 |  | eqid |  |-  ( x e. V |-> ( x ., A ) ) = ( x e. V |-> ( x ., A ) ) | 
						
							| 13 |  | ovex |  |-  ( .0. ., A ) e. _V | 
						
							| 14 | 11 12 13 | fvmpt |  |-  ( .0. e. V -> ( ( x e. V |-> ( x ., A ) ) ` .0. ) = ( .0. ., A ) ) | 
						
							| 15 | 10 14 | syl |  |-  ( ( W e. PreHil /\ A e. V ) -> ( ( x e. V |-> ( x ., A ) ) ` .0. ) = ( .0. ., A ) ) | 
						
							| 16 | 1 2 3 12 | phllmhm |  |-  ( ( W e. PreHil /\ A e. V ) -> ( x e. V |-> ( x ., A ) ) e. ( W LMHom ( ringLMod ` F ) ) ) | 
						
							| 17 |  | lmghm |  |-  ( ( x e. V |-> ( x ., A ) ) e. ( W LMHom ( ringLMod ` F ) ) -> ( x e. V |-> ( x ., A ) ) e. ( W GrpHom ( ringLMod ` F ) ) ) | 
						
							| 18 |  | rlm0 |  |-  ( 0g ` F ) = ( 0g ` ( ringLMod ` F ) ) | 
						
							| 19 | 4 18 | eqtri |  |-  Z = ( 0g ` ( ringLMod ` F ) ) | 
						
							| 20 | 5 19 | ghmid |  |-  ( ( x e. V |-> ( x ., A ) ) e. ( W GrpHom ( ringLMod ` F ) ) -> ( ( x e. V |-> ( x ., A ) ) ` .0. ) = Z ) | 
						
							| 21 | 16 17 20 | 3syl |  |-  ( ( W e. PreHil /\ A e. V ) -> ( ( x e. V |-> ( x ., A ) ) ` .0. ) = Z ) | 
						
							| 22 | 15 21 | eqtr3d |  |-  ( ( W e. PreHil /\ A e. V ) -> ( .0. ., A ) = Z ) |