Step |
Hyp |
Ref |
Expression |
1 |
|
phlsrng.f |
|- F = ( Scalar ` W ) |
2 |
|
phllmhm.h |
|- ., = ( .i ` W ) |
3 |
|
phllmhm.v |
|- V = ( Base ` W ) |
4 |
|
ip0l.z |
|- Z = ( 0g ` F ) |
5 |
|
ip0l.o |
|- .0. = ( 0g ` W ) |
6 |
1 2 3 4 5
|
ip0l |
|- ( ( W e. PreHil /\ A e. V ) -> ( .0. ., A ) = Z ) |
7 |
6
|
fveq2d |
|- ( ( W e. PreHil /\ A e. V ) -> ( ( *r ` F ) ` ( .0. ., A ) ) = ( ( *r ` F ) ` Z ) ) |
8 |
|
phllmod |
|- ( W e. PreHil -> W e. LMod ) |
9 |
8
|
adantr |
|- ( ( W e. PreHil /\ A e. V ) -> W e. LMod ) |
10 |
3 5
|
lmod0vcl |
|- ( W e. LMod -> .0. e. V ) |
11 |
9 10
|
syl |
|- ( ( W e. PreHil /\ A e. V ) -> .0. e. V ) |
12 |
|
eqid |
|- ( *r ` F ) = ( *r ` F ) |
13 |
1 2 3 12
|
ipcj |
|- ( ( W e. PreHil /\ .0. e. V /\ A e. V ) -> ( ( *r ` F ) ` ( .0. ., A ) ) = ( A ., .0. ) ) |
14 |
13
|
3expa |
|- ( ( ( W e. PreHil /\ .0. e. V ) /\ A e. V ) -> ( ( *r ` F ) ` ( .0. ., A ) ) = ( A ., .0. ) ) |
15 |
14
|
an32s |
|- ( ( ( W e. PreHil /\ A e. V ) /\ .0. e. V ) -> ( ( *r ` F ) ` ( .0. ., A ) ) = ( A ., .0. ) ) |
16 |
11 15
|
mpdan |
|- ( ( W e. PreHil /\ A e. V ) -> ( ( *r ` F ) ` ( .0. ., A ) ) = ( A ., .0. ) ) |
17 |
1
|
phlsrng |
|- ( W e. PreHil -> F e. *Ring ) |
18 |
17
|
adantr |
|- ( ( W e. PreHil /\ A e. V ) -> F e. *Ring ) |
19 |
12 4
|
srng0 |
|- ( F e. *Ring -> ( ( *r ` F ) ` Z ) = Z ) |
20 |
18 19
|
syl |
|- ( ( W e. PreHil /\ A e. V ) -> ( ( *r ` F ) ` Z ) = Z ) |
21 |
7 16 20
|
3eqtr3d |
|- ( ( W e. PreHil /\ A e. V ) -> ( A ., .0. ) = Z ) |